
A High Quality, Fast Inverse Halftoning Algorithm

for Error Di�used Halftones
Thomas D. Kite, Niranjan Damera-Venkata, Brian L. Evans, and Alan C. Bovik

Laboratory for Image and Video Engineering

Department of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712-1084 USA

E-mail: ftom,damera,bevans,bovikg@vision.ece.utexas.edu

Abstract| We present an inverse halftoning algorithm
for error di�used halftones. At each pixel, the algo-
rithm applies a separable 7 � 7 FIR �lter parameterized
by the horizontal and vertical edge strengths computed
from the local gradients. The algorithm requires en-
tirely local operations, storage of 7 rows, and fewer than
300 arithmetic operations/pixel. The algorithm can be
easily implemented in embedded software or hardware.
We compare our algorithm with previously reported ap-
proaches to show that it delivers comparable PSNR and
subjective quality at a fraction of the computation and
memory requirements. A C implementation of the al-
gorithm is available at http://www.ece.utexas.edu/~bevans/

projects/inverseHalftoning.html.

I. Introduction

Inverse halftoning algorithms recover grayscale images
from halftones. This is useful when a halftone is the only
available version of an image, and enhancement, compres-
sion, or some other manipulation of the image is required.
Apart from very simple operations, such as cropping and
rotation through multiples of 90�, halftones cannot be ma-
nipulated without causing severe image degradation. They
are also di�cult to compress, either losslessly or lossily;
grayscale images, on the other hand, can be compressed ef-
�ciently [1], [2]. The ability to generate an inverse halftone
allows a wide range of operations to be performed.

Several inverse halftoning methods have been described
in the literature. Screened halftones and error di�used half-
tones have greatly di�ering artifacts, and must be dealt
with individually. We focus on error di�usion. Published
inverse halftoning methods for error di�used halftones in-
clude vector quantization [2], projection onto convex sets
[3], nonlinear permutation �ltering [4], MAP projection
[5], wavelets [6], and Bayesian schemes [7]. Many meth-
ods show good results, but several are iterative, requir-
ing large amounts of computation and memory. Most also
make heavy use of 
oating-point arithmetic.

In this paper, we present a single-pass scheme with the
lowest computation and memory requirements that pro-
duces results comparable to those seen in the literature.
Our scheme consists of multiscale directional gradient es-
timation followed by adaptive lowpass �ltering. Most of
the processing is accomplished with integer additions, and
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Figure 1: Block diagram of the inverse halftoning algo-
rithm. Outputs of the four gradient estimation �lters are
correlated across scales and conditioned to produce �lter
parameters x1, y1, from which x2, y2 are computed. The
x and y �lters are constructed and applied separably.

only seven image rows are kept in memory at one time.

II. Background

Halftones have a very low signal-to-noise ratio (SNR)
relative to the original image, because of the one-bit word-
length. In error di�used halftones, most of the quantization
noise power falls at high spatial frequencies. This is known
as the blue noise characteristic, and is proposed as opti-
mal in [8]. An inverse halftoning scheme should remove as
much of this noise as possible, while retaining important
image features. Using a linear lowpass �lter gives poor
results, since it is impossible to �nd a �lter that produces
adequately smooth regions and sharp edges simultaneously.

The algorithm described here is a form of anisotropic

di�usion, a tool introduced by Perona and Malik princi-
pally to implement robust multi-scale edge detection [9].
Anisotropic di�usion estimates image gradients to compute
a di�usion coe�cient that governs smoothing. A non-linear
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relationship between the estimated gradient and the di�u-
sion coe�cient encourages smoothing inside regions, but
not between them. To perform inverse halftoning, we esti-
mate gradients from the halftone, and derive control func-

tions that vary the cuto� frequency of a smoothing �lter.
A block diagram of the algorithm is shown in Figure 1.
Error di�usion is equivalent to a two-dimensional form

of delta-sigma modulation [10], and can be viewed as
spatially-interactive wordlength reduction. Inverse halfton-
ing is therefore spatially-interactive wordlength expansion;
the increase in wordlength is achieved by averaging over
a neighborhood of pixels. We vary the trade-o� between
spatial resolution (detail) and grayscale resolution (word-
length) according to the local image gradient. The gradient
estimation and �ltering is conducted separably in the hor-
izontal (x) and vertical (y) directions, allowing smoothing
to occur parallel to an edge. This increases the wordlength,
without blurring the edge.

III. Smoothing filter design

The smoothing �lter, which recovers the inverse halftone
from the halftone, must satisfy the following criteria:

� Small extent, FIR
� Simple to generate
� Separable
� Cuto� frequency determined by a single parameter
� Frequency response tailored for halftones

An FIR �lter is guaranteed to be stable, and its output can
be computed quickly when its extent is small. Computa-
tion is reduced by making the �lter simple to generate on
the 
y. By making the �lter separable, it can be designed,
constructed and applied independently in each direction,
thereby further reducing execution time. We require the
cuto� frequency of the �lter in each direction to be deter-
mined by one parameter, namely, the control function.
The frequency response of the �lter is constrained to ac-

count for the particular characteristics of halftones. Strong
idle tones (also known as \worms") are often present, and
should be suppressed in the inverse halftone, else they will
lead to undesirable texture. In Floyd-Steinberg error dif-
fusion [11], idle tones are particularly likely to occur at
(fN ; fN ), (fN ; 0), and, to a lesser extent, (0; fN) [12], where
fN refers to the Nyquist frequency, and (fh; fv) denotes
horizontal and vertical spatial frequency, respectively. We
place a zero at fN in the lowpass �lter to suppress these
tones. Halftones produced using Jarvis error di�usion [13]
are less likely to contain these tones [12].
We require the gain of the �lter to be unity at DC, to

preserve the image mean (brightness). We use a symmetric
�lter for linear phase; it is well-known that this is critical
for good performance of image processing �lters [14]. Two
parameters are free to determine the �lter response. We
constrain the maximum passband ripple to ensure that the
inverse halftone is a faithful reproduction of the original
image. A �lter with an excessively peaked passband pro-
duces falsely sharpened images. We found empirically that
restricting the ripple to �7% (�0:59 dB) produced high

quality images. The maximum stopband gain was speci-
�ed as 0.05 (�26:0 dB), so that the total noise power in
the �lter output decreases monotonically as the cuto� fre-
quency of the �lter is lowered. If the maximum stopband
gain is not speci�ed, it is possible to design a �lter a whose
cuto� frequency is lower than that of �lter b, yet whose out-
put has a higher noise power. This produces poor inverse
halftones, since the reduction of quantization noise is no
longer inversely proportional to the local image gradient.
The class of one-dimensional �lters satisfying the criteria

of unity gain at DC and a zero at fN has the form

[ x2 � x1 + 2; x2; x1; 4; x1; x2; x2 � x1 + 2 ] ; (1)

where x1 and x2 are chosen so that the �lter satis�es the
passband and stopband speci�cations. A scaling factor of
1=(4x2 + 8) is applied to achieve unity gain at DC. We
refer to this class of �lters as the one-dimensional prototype

class. We construct two �lters from the class at each pixel
of the input image, one for each of the x and y directions.
We designed ten lowpass �lters that met the speci�ca-

tions using the sequential quadratic programming (SQP)
algorithm in the Matlab optimization toolbox. This al-
gorithm varies parameters (in this case, x1 and x2) to min-
imize a cost function, subject to a constraint. We used the
passband ripple as the constraint, and the maximum gain
in the stopband as the cost function. These de�nitions lead
to equiripple �lters in principle, and near-equiripple �lters
in practice. We then found a cubic polynomial �tting the
designed values of x2 to the corresponding values of x1, so
that only one parameter is needed to specify the �lter. The
�t is given by (the y relation is analogous):

x2 = 0:4631x31 � 2:426x21 + 4:660x1 � 3:612 : (2)

The result is a �lter whose cuto� frequency can be varied
continuously between 0:07fN and 0:50fN by changing x1.

IV. Gradient estimator design

Discrete di�erence gradient estimators are not robust
to noise. Catt�e, Lions, Morel and Coll [15] address this
by smoothing the gradient estimate with a Gaussian low-
pass �lter, which is known to be optimal in this regard
[16]. However, the high noise power at high frequencies
and strong idle tones characteristic of error di�used half-
tones necessitate a di�erent �lter. We use a lowpass �lter
with the characteristics described in Section III, which per-
forms better than the Gaussian. To improve robustness to
noise further, we estimate gradients at two scales and cor-
relate the results. Large, sharp edges appear across scales,
whereas noise does not [17]. We found that gradient esti-
mation at two scales gave the best performance for the test
images used. The �lter speci�cations are as follows:

� Line zeros at (�; 0), (fN ;�), and (�; fN)
� Maximum stopband gain of 0:03
� Peak passband gain of 1
� Narrowest possible passband for a given �lter size

The speci�cations on the line zeros and the maximum stop-
band gain arise from the considerations of Section III. The
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peak passband gain is de�ned to be unity, so the �lter out-
put range is known. The �lter passband is made as narrow
as possible to best distinguish between the two scales.
Each �lter is separable. In the direction in which gra-

dients are estimated, the �lter is bandpass, with zeros at
DC and the Nyquist frequency. The free parameters are
chosen to give the narrowest passband possible, subject to
the maximum stopband gain being 0.030. In the direction
perpendicular to the direction of gradient estimation, the
�lter is lowpass, with the lowest possible cuto� frequency
for the �lter size to maximize noise rejection.
Since the peak passband gain of the �lters is known,

we can �nd fast integer implementations. We scaled each
�lter by a power of two and rounded the coe�cients to �t
into one byte. Since the halftone is binary, only integer
additions are needed to compute the output of each �lter.
We denote the four �lters hsmall

x , hsmall
y , hlargex , and hlargey ,

where the superscripts `small' and `large' refer to the scale.

V. Correlation across scales

At each pixel of the input image, we �lter the halftone
with the four gradient estimators to produce outputs esmall

x ,
esmall
y , elargex , and elargey . To correlate the gradients across
scales, we compute the control functions according to

ecomp
x =

�
�esmall
x � elargex � elargex

�
�
1=3

; (3)

where j � j denotes absolute value. (The expression for the
y control function is analogous.) We weight the large-scale
gradient more heavily than the small-scale gradient to sup-
press small-scale noise. This produces slightly smoother,
better quality inverse halftones than equal weighting. Since
each gradient estimator is linear, its output is proportional
to its input. The product in (3) is therefore proportional
to the cube of the gradient. We �nd its cube root so that
the control function varies linearly with the gradient.
We quantify the accuracy of the gradient images ob-

tained from the halftone by computing their signal-to-noise
ratio (SNR) relative to the gradients obtained from the
grayscale image. We found that the small-scale images,
esmall
x and esmall

y , have an average SNR of approximately 2.9
dB. The large amount of quantization noise in the small-
scale images computed from the halftone leads to the low
SNR �gure; however, the images are sharp. The large-scale
images, elargex and elargey , have an average SNR of approxi-
mately 11 dB. However, they are not as sharp as the small-
scale images. The control functions have an average SNR of
approximately 8.1 dB, an improvement of more than 5 dB
over the small-scale �gure. Furthermore, they are sharp.
By correlating across scales, we obtain most of the noise
rejection of the large-scale gradient image, while retaining
the sharpness of the small-scale image.

VI. Construction of the inverse halftone

The control functions, ecomp
x and ecomp

y , are used to de-
termine the cuto� frequencies of the lowpass �lter in the
x and y directions independently. We require a relation
between ecomp

x and x1. To reduce computation, we use a

linear relation (the y relation is analogous):

x1 = a+ b ecomp
x : (4)

We determined values for a and b by varying them while
monitoring the visual quality of test images. The best re-
sults were achieved when a = 3:33 and b = �5:7.
Once x1 has been computed, we derive x2 using (2), and

construct the prototype �lter according to (1), ignoring for
the moment the factor of 1=(4x2+8). Each coe�cient is a

oating-point number in the approximate range (�0:5; 4).
We scale each coe�cient by the factor 1024 (210), and con-
vert it to an integer by discarding the fractional part. This
results in at most a 13-bit signed integer, apart from the
�xed central coe�cient, which is 14-bit. By using 13-bit
coe�cients, the �ltered result has a wordlength less than
or equal to 32 bits, which is a common integer wordlength
for general purpose hardware. The coe�cient quantization
has no measurable e�ect on the �nal results.
The x and y prototype �lters are applied separably to

the 7� 7 neighborhood centered on the current pixel. (At
the boundaries of the image, three pixels are replicated
by mirroring to simplify the �ltering.) Applying the �l-
ters separably obviates the need to construct the equivalent
two-dimensional �lter, saving 42 integer multiplications per
pixel over a non-separable implementation.
The �ltered output pixel is converted to a float and

scaled. The scaling simultaneously accounts for the ignored
factor 1=(4x2 + 8) from (1) (and the corresponding factor
from the y �lter), the scaling factor used in converting the
�lter coe�cients to integers, and the requirement that the
output pixels be in the range (0; 255). Clipping enforces
this range, before the pixel is rounded to the nearest integer
and converted to an unsigned char (single byte).

VII. Computation and memory requirements

The following operations are required per pixel:

� 303 increments (++)
� 30{226 integer additions
� 7 integer multiplications
� 34 
oating-point additions
� 19 
oating-point multiplications
� 5 
oating-point divisions

The number of integer additions depends on the image.
A halftone composed solely of black pixels would require
30 integer additions per pixel, whereas an all-white half-
tone would require 226. A typical mid-gray image requires
approximately 128 integer additions. We list the incre-
ment operator separately, because some hardware can per-
form this operation with zero time penalty. The number of

oating-point operations, particularly divisions, has been
minimized for speed. For an image of size 512�512 pixels,
the entire inverse halftoning process takes 2.9 seconds to
execute on a 167 MHz Sun UltraSparc 2 machine, and 6.8
seconds on a Sparc 10.
Execution proceeds in raster fashion, one row at a time.

Seven image rows are required for the �lters; they are kept
in the image storage area, a pre-allocated array of memory
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Algorithm, Memory Comp- PSNR (dB)
Reference usage lexity lena peppers

POCS [3] 8N2 High 30.4 {

Bayes [7] 8N2 High { {

Kernel est. [5] 8N2 Med. 32.0 30.2

Wavelet [6] 36N2 Med. 31.5 30.4

Proposed 7N Low 31.3 31.4

Table I: Comparison of inverse halftoning schemes. Mem-
ory requirements are estimated in bytes, assuming an im-
age size of N � N pixels. Computational complexity is
estimated from algorithm information given in the cited
papers. \Low" complexity denotes fewer than 500 opera-
tions per pixel, \medium" denotes 500{2000 operations per
pixel, and \high" denotes more than 2000 operations per
pixel. PSNR �gures are taken directly from the publica-
tions, where available.

of size 7 (c + 6) bytes, where c is the number of image
columns. (There are 6 more columns in the storage area
than in the image itself, because of the mirroring extension
of 3 pixels at the image boundaries.) The image pixels
themselves take up one byte each. For an image of size
512 � 512 pixels, 3626 bytes of memory are allocated for
image storage.
After an entire row has been inverse halftoned, rows 2{7

of the image storage area are moved upwards into the posi-
tions occupied by rows 1{6, and a new image row is written
into the row 7 position. If circular bu�ering were available
(as on programmable digital signal processors), the block
move could be avoided. However, the time penalty due
to the move is small, because of the small block size, and
because only one shift is needed for each row.

VIII. Results

Figures 2(a) and 2(b) show the original lena and pep-

pers images, respectively. Figures 2(c) and 2(d) show the
corresponding Floyd-Steinberg halftones. Figures 2(e) and
2(f) show the inverse halftones computed using the pro-
posed algorithm. Both inverse halftones display a range of
sharp edges and smooth regions. The edges are particularly
sharp, and close inspection shows them to be sharper and
more realistic than those produced by the wavelet scheme
described in [6].
Table I shows that the proposed algorithm uses by far

the least memory of any scheme for reasonable image sizes,
since it is the only scheme whose memory requirement in-
creases linearly with N , rather than quadratically. Fur-
thermore, it does not store copies of the image, as iterative
schemes do. The computational complexity of the pro-
posed algorithm is also considerably lower than the other
schemes, all of which make heavy use of 
oating-point
arithmetic. Nevertheless, the PSNR achieved for the stan-
dard images is comparable to the best schemes. (The large
improvement in PSNR for the peppers image is due in part
to an error in the original image. This error was corrected
for this work, and was reported to the authors of [6].)

IX. Conclusion

We have presented a fast inverse halftoning method that
produces results comparable to other methods reported in
the literature. When compared to existing methods, our
scheme has the lowest computation and memory require-
ments for the same visual quality. Its simple implemen-
tation, using only local operations, makes it attractive for
practical applications and low-cost devices such as facsim-
ile machines. The small wordlength, integer additions re-
quired for the gradient estimation make the algorithm ide-
ally suited for e�cient parallel implementations on the Intel
MMX architecture.
Currently, we are exploring visual quality measures de-

signed speci�cally for inverse halftoning schemes, in a man-
ner similar to that proposed for halftoning schemes in [10].
Our results indicate that PSNR is particularly inappropri-
ate for inverse halftones.
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(a) Original lena image. (b) Original peppers image.
                        

(c) Floyd-Steinberg halftone. (d) Floyd-Steinberg halftone.
                        

(e) Inverse halftone. PSNR = 31.34 dB. (f) Inverse halftone. PSNR = 31.43 dB.

Figure 2: Inverse halftoning results of proposed algorithm. Images are 512� 512 pixels in size.


