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Abstract—Multicolor fluorescence in situ hybridization
(M-FISH) techniques provide color karyotyping that allows
simultaneous analysis of numerical and structural abnormalities
of whole human chromosomes. Chromosomes are stained combi-
natorially in M-FISH. By analyzing the intensity combinations of
each pixel, all chromosome pixels in an image are classified. Often,
the intensity distributions between different images are found to
be considerably different and the difference becomes the source
of misclassifications of the pixels. Improved pixel classification
accuracy is the most important task to ensure the success of the
M-FISH technique. In this paper, we introduce a new feature nor-
malization method for M-FISH images that reduces the difference
in the feature distributions among different images using the ex-
pectation maximization (EM) algorithm. We also introduce a new
unsupervised, nonparametric classification method for M-FISH
images. The performance of the classifier is as accurate as the
maximum-likelihood classifier, whose accuracy also significantly
improved after the EM normalization. We would expect that any
classifier will likely produce an improved classification accuracy
following the EM normalization. Since the developed classification
method does not require training data, it is highly convenient
when ground truth does not exist. A significant improvement was
achieved on the pixel classification accuracy after the new feature
normalization. Indeed, the overall pixel classification accuracy
improved by 20% after EM normalization.

Index Terms—Chromosome, classification, expectation maxi-
mization (EM), maximum-likelihood, multicolor fluorescence in
situ hybridization (M-FISH), normalization, unsupervised.

I. INTRODUCTION

T HE FLUORESCENCE in situ hybridization (FISH) mi-
croscopic imaging modality has been widely used for the

analysis of genes and chromosomes. Multiple fluorophores are
often used combinatorially to visualize several biological target
types simultaneously. Using combinatorial labeling methods,

specimens can be discriminated using fluorophores.
When three fluorophores are used, seven specimens can be an-
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alyzed by the binary combinations (presence or absence) of the
fluorophores. gray scale images of specimens, stained with
fluorophores, can be obtained using a monochrome camera and
a set of optical bandpass filters that are specifically designed for
the excitation and emission wavelengths of the fluorophores [1].

In particular, multicolor (multiplex) fluorescence in situ
hybridization, so called M-FISH, uses minimum five fluo-
rophores to uniquely identify all 24 chromosome types of
the human genome. A sixth fluorophore, DAPI (4’-6-di-
amidino-2-phenylindole, a blue fluorescent dye), is used to
counterstain the chromosomes [1], [2]. Thus, each pixel of
an M-FISH image is typically composed of six values that
correspond to the intensities of six fluorophores. Fig. 1 shows
an example of M-FISH images. By analyzing the combinations
of the six spectral intensities, all of the chromosome pixels in an
image are identified, and a pseudocolor is assigned based on the
class the pixel belongs to [3], [4]. After the pixel classification,
chromosomes are displayed according to a standard format.

The M-FISH technique has been used for the characterization
of translocations, to search for cryptic rearrangements, to study
mutagenesis, tumors, and radiobiology [5]. In cancerous cells,
translocations, or exchanges of chromosomal material between
chromosomes, are extremely common.

Currently available M-FISH systems still exhibit misclassi-
fications of multiple pixel regions due to a number of factors,
including nonhomogeneity of staining, variations of intensity
levels within and between image sets, and emission spectra
overlaps between fluorophores. The size of the misclassified
regions are often larger than the actual chromosomal rearrange-
ment. To reliably detect subtle and cryptic chromosomal
aberrations, a highly accurate pixel classification method has to
be developed. Along with a reliable pixel classification method,
automation of karyotyping process is another important goal.
The automation requires segmentation of chromosomes, which
not only involves object/background separation but also in-
volves separating touching and overlapping chromosomes.
While automating the segmentation of partially occluded
chromosomes is an extremely challenging problem, a pixel
classification method that satisfies both high accuracy and
minimum human intervention has not been realized.

In order to achieve a high accuracy in pattern recognition,
selection or extraction of good features is the most important
stage of processing. Different classifiers may produce different
accuracies, but the accuracy is fundamentally bounded by the
sample distribution in the feature space. Thus, feature normal-
ization is also a crucial part of classification after feature se-
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Fig. 1. An M-FISH image. Chromosomes are combinatorially labeled using five fluorophores and counterstained using DAPI. Each gray scale image corresponds
to the sum of intensities of the emission wavelengths (a narrow range of wavelengths) of each fluorophore. (a) DAPI. (b) Aqua. (c) Green. (d) Gold. (e) Red.
(f) Far Red.

lection. In particular, when features are obtained independently,
the normalization must be performed in order to reduce the in-
travariance of the feature distribution among different images.
In M-FISH, each channel is captured independently, and each
channel has a different integration time due to different signal
strengths of fluorophores. As the relative intensity values across
the six channels are used as features, intensity variations should
be normalized prior to pixel classification.

In this paper, we present a new normalization method for
M-FISH images using the expectation maximization algorithm.
The developed normalization method significantly increases the
pixel classification accuracy for any classifier. We also present
a new classification method for M-FISH images that does not
require training of a classifier (unsupervised) nor does it require
class parameter estimation (nonparametric).

II. NORMALIZATION OF M-FISH IMAGES

A. Motivation
In M-FISH, six fluorophores are combinatorially used to dis-

criminate 24 chromosome types. For those who are not familiar
with M-FISH, the color map of Vysis probe sets are shown in
Table I. According to the color map, chromosome 1, for ex-
ample, is stained with DAPI and spectrum Gold dyes. Ideally
chromosome 1 should be observed only in the DAPI and Gold
channels and should not be visible in other channels. However,
due to the overlap of excitation and emission spectra and the
broad sensitivity of image sensors, the obtained images con-
tain a certain amount of crosstalk between the color channels.
This phenomenon is called color spread [6]. Thus, all chromo-
somes are visible on all channels with different intensity levels
(see Fig. 1). Furthermore, each fluorophore has a different sen-
sitivity to the excitation wavelength. Thus, some fluorophores

TABLE I
CHROMOSOME LABELING CHART OF VYSIS M-FISH PROBE

require a short integration time while others require a long ex-
posure time. Especially Aqua and Gold require long exposure
times in order to visualize the hybridized chromosomes. An ex-
ample of integration times is [DAPI, Aqua, Green, Gold, Red,
Far Red] seconds. When a pixel
belongs to chromosome 1, the obtained intensity values are ex-
pected to have a pattern of [high, low, low, high, low, low] for
Vysis probes. Unfortunately, this pattern can be easily broken
when each channel is independently acquired. A long expo-
sure time amplifies the leaked intensity, and in some cases it
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TABLE II
PIXEL VALUES OF CHROMOSOME 1. EVEN THOUGH CHROMOSOME 1
IS STAINED WITH DAPI AND GOLD, THERE IS NO OBVIOUS PATTERN

IN FEATURE VALUES BECAUSE OF CHANNEL CROSSTALK AND
INDEPENDENT INTEGRATION TIME PER CHANNEL

can be higher than the chromosome intensities on other chan-
nels at the same pixel location. The different dc offset levels of
each channel of the imaging device [e.g., three channel (color
charge-coupled device (CCD)] and nonflat background eleva-
tion also bias the signal intensity upward. Furthermore, chromo-
somes appearing in one spectral channel exhibit different inten-
sity levels: some are darker or brighter than others, partially be-
cause of the nonflat background, but more substantially because
of the different fluorophore sensitivities for different chromo-
somes. Examples of real pixel values of chromosome 1 across
multiple images are shown in Table II. As shown in the table,
there is no obvious pattern in the feature values for the preceding
reasons.

When the variation of the feature distribution across images is
significant, which means the feature distribution of an unknown
image is unpredictable, classification methods that rely on the
estimation of class parameters will yield low accuracy.

As long as classes are grouped separately in the feature
space even if the feature distribution differs from image to
image, pixels can be accurately classified without estimating
class parameters using unsupervised-nonparametric clustering
methods such as -means clustering or fuzzy -means clus-
tering. However, when the number of classes is not fixed (e.g.,
chromosome images: the number of chromosome classes dif-
fers by gender or diseases), finding the right number of classes
after the clustering by cluster validation adds complexity and
may cause inaccuracy. Pixels can be clustered into a maximum
number of classes (24 clusters for M-FISH data) using these
methods, and clusters that are closer than a threshold should be
merged. The threshold will be again data dependent, which will
be different for different images.

Therefore, regardless of the choice of classifiers the variations
of the feature distribution should be minimized in order to obtain
overall high accuracy in pixel classification.

B. Background Correction and Color Compensation

This section briefly describes how each preprocessing step
improves the image quality and the quality of pattern (feature
vector). Castleman first introduced a signal model for FISH im-
ages, and showed that the true signal can be recovered based
on the model [7]. Microscope images of biological specimens
often contain nonflat background surfaces. The removal of the
nonflat background surface is called background correction, and
is commonly performed as a preprocessing step. The removal of
the channel crosstalk is called color compensation.

The observed signal at a pixel is modeled as

(1)

where, is the 6 1 vector of the true signal, is the 6 6
color spread matrix, includes the dc-offset of the CCD and
various factors that cause background intensity elevation, is
the noise of the imaging device such as white noise and shot
noise, and is the 6 6 diagonal matrix of exposure times. This
model assumes that the gray levels are linear with brightness of
the fluorophores.

The noise term can be minimized by median filtering and
lowpass filtering with a 3 3 kernel for both operations.

The nonflat background surface can be approximated by a
2-D cubic surface. The surface that has the minimum mean
square error relative to the background pixels is the estimated
2-D cubic surface [6]. By subtracting the surface from the image
(six surfaces are estimated for six channels), is removed.

After the background correction, the signal model becomes

(2)

Once the color spread matrix is found from a labeled image
or images, it can be applied to other images to correct color
spreadings (the details of estimating from the labeled images
are out of the scope for this paper). An image is a set of pixels
of , where and is the number of pixels in
an image. An image without the channel crosstalk is computed
by for all . To account for the fluorophore
sensitivities, exposure times can be multiplied by .

Color compensation is an effective method of improving the
quality of M-FISH images by removing the channel crosstalk.
Fig. 2 shows an example of before and after the color compen-
sation. It is not easy to distinguish which chromosomes are truly
hybridized and which are due to crosstalk in Fig. 2(b). In par-
ticular, chromosomes marked with number 1 and 2 are due to
crosstalk and they are effectively removed in Fig. 2(f).

Table III shows pixel values after the background correction
and color compensation. As the values show, the intensity corre-
sponding to the channel crosstalk has been removed effectively.
The background correction helps reveal the pattern and color
compensation further enhances the pattern, as shown in Fig. 2
and in Table III. Accordingly, pixel classification accuracy also
increased significantly after the background correction (results
are shown in Section IV). However, our experiments on a small
number of images showed that color compensating images after
the background correction did not improve the overall classifica-
tion accuracy, which contradicts our expectation. This suggests
that revealing the pattern helps classification but enhancing the
pattern is not enough. The pattern must satisfy a certain criteria,
which is explained in the following section. The color compen-
sation improves the image quality significantly but may not be
a necessary preprocessing step for pixel classification.

C. Expectation Maximization Normalization

Even after background correction and color compensation,
intensity variations within a chromosome and among chromo-
somes in a channel and between channels, caused by uneven hy-
bridization in a chromosome and unequal fluorophore sensitivi-
ties depending on chromosomes, remain as a source of classifi-
cation error. Given a channel, chromosomes that are supposed to
be bright in that channel are expected to have a similar intensity
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Fig. 2. Color compensation result on image V1301XY. (a) Green, Aqua, and DAPI channels of V1301XY are combined as a color image. (b) Far red, Red, and
Gold channels are combined and shown as a color image. (c) and (d) Result of background correction. (e) and (f) Color compensation result (simple scaling has
been applied to the color compensated image). As shown in (e) and (f) the quality of the image has been improved significantly by removing channel crosstalk. Pixel
values numbered on (b) are shown in Table III. (a) Before color compensation. (b) Before color compensation. (c) Background correction of (a). (d) Background
correction of (b). (e) Color compensation of (a). (f) Color compensation of (b).

level among them, but often chromosome intensities consider-
ably differ as some are much brighter than others. Those bright
chromosomes in one channel are not consistently brighter than
other chromosome in other channels where they are supposed
to appear. Often a chromosome with a certain intensity level
on one channel appears on another channel with a significantly

lower or higher intensity. This inconsistency causes classifica-
tion errors since the pattern, more specifically the texture, of
a feature vector becomes inconsistent. Given an individual
feature value, e.g., gray scale of 60, it is uncertain whether it
comes from a hybridized chromosome or from noise. Only when
a feature vector is formed does the relative intensity difference
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TABLE III
PIXEL VALUES NUMBERED ON FIG. 2(B). NP, BC, AND CC
MEANS NO PROCESSING, BACKGROUND CORRECTION, AND

COLOR COMPENSATION, RESPECTIVELY

among feature values deliver meaningful information about the
pixel membership. The relative intensity difference among fea-
ture values is called texture, which is independent of the mean
value of the vector. Two feature vectors and

have the same texture, while a third
vector has a similar intensity pattern
of High and Low as and but has a different texture, if we
define the texture as .

Suppose that (chromosome 10), and the pattern of
is consistent throughout all , then a supervised clas-

sification method should work well without further normalizing
the data. Even though background correction significantly re-
duced the variations in all feature vectors that belong to a chro-
mosome for all , there are pixels misclassified due to the
aforementioned variations. Therefore, hybridized chromosomes
must have a certain intensity level across all spectral channels,
and at the same time, noise including intensity due to spec-
tral crosstalk should have a certain intensity level that is lower
than the intensity of hybridized chromosomes across all spec-
tral channels. The normalization process should minimize the
difference of the sample distributions (determined by the joint
density functions) for all images. This can be achieved by nor-
malizing the variables (the features).

An M-FISH image is composed of six gray scale images
, each corresponding to a spectral channel.

Each gray scale image contains gray scale values that be-
long to background and chromosomes , i.e.,

, and
, where intensity due to none fluorophore and

intensity due to a fluorophore. The distribution of in
is assumed to be a mixture of two Gaussians:

and , and . Then
is a set of unlabeled samples drawn independently from the mix-
ture density

(3)

Since the models are identical for all channels, the channel
index is not specified for . A parameter vector contains

Fig. 3. Segmentation result. Chromosomes are automatically segmented from
background by utilizing six spectral information, global and local intensity, and
edge information. Cells are also removed based on the size and circularity. (a)
V130740XY DAPI Channel. (b) Segmentation result.

. and are prior
probabilities and also called mixing parameters.

The separation between and is obtained by a new
automatic segmentation method [8], which combines global and
local intensity, spectral information, and edge information to
segment chromosomes from the background. Cells are also re-
moved based on size and circularity (see Fig. 3).

After the segmentation, only pixels inside chromosome area
are classified. Among the six features, the DAPI channel pro-
vides information regarding whether a pixel belongs to chromo-
somes or to background. Since chromosome-background clas-
sification (segmentation) is already accomplished, DAPI infor-
mation becomes redundant when classifying only chromosome
pixels. Thus, the remaining five features are normalized and
used for classification.

Fig. 4 shows an example of the mixture density distributions
of of an M-FISH image, V1401XX. The black bars in
Fig. 4 represent the range of gray scale values for a pixel that has
a [high low high low high] pattern. As one can notice, a signifi-
cant portion of high values in overlaps with low values in

and , resulting in a totally unexpected pattern. This
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