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GAFFE: A Gaze-Attentive Fixation Finding Engine
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Abstract— The ability to automatically detect visually interest-
ing regions in images has many practical applications, especially
in the design of active machine vision and automatic visual
surveillance systems. Analysis of the statistics of image features at
observers’ gaze can provide insights into the mechanisms of fix-
ation selection in humans. Using a foveated analysis framework,
we studied the statistics of four low-level local image features:
luminance, contrast, and bandpass outputs of both luminance and
contrast, and discovered that image patches around human fixa-
tions had, on average, higher values of each of these features than
image patches selected at random. Contrast-bandpass showed
the greatest difference between human and random fixations,
followed by luminance-bandpass, RMS contrast, and luminance.
Using these measurements, we present a new algorithm that
selects image regions as likely candidates for fixation. These
regions are shown to correlate well with fixations recorded from
human observers.

Index Terms— Eye tracking, Point-of-gaze, Foveation, Fixation
selection

I. I NTRODUCTION

The human visual system is constantly bombarded with
a slew of visual data, from which it actively selects and
assimilates relevant visual information in an efficient and
seemingly effortless manner. Despite a large field of view,
the human visual system processes only a tiny central region
(the fovea) with great detail while the resolution drops rapidly
towards the periphery [1]. Such afoveated visual encoding
provides for a large field of view without the accompanying
data glut. To assimilate visual information and build a detailed
representation from this multi-resolution visual input, the hu-
man visual system uses a dynamic process of actively scanning
the visual environment using fixations linked by rapid, ballistic
eye movements called saccades [2]; most visual information
is acquired during a fixation and little or no information is
gathered during a saccade [3].

The active nature of looking, as instantiated in the human
visual system, promises to have advantages in both speed and
reduced storage requirements in artificial vision systems as
well. In fact, several foveated vision sensor arrays have been
designed and used in real-time imaging systems [4]–[6]. The
next generation of efficient, foveated, active vision systems [7]
could potentially be applied to a diverse array of problems such
as automated pictorial database query, image understanding,
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image quality assessment [8], automated object detection,
autonomous vehicle navigation, and real-time, foveated video
compression [9], [10]. Also, the ability to understand and
reproduce an expert radiologist’s eye movements could be used
in semi-automated detection of lesions in digital mammograms
[11] - a problem of life-saving significance. Machine vision
systems that can actively select visually interesting regions
in an image also find applications in the area of planetary
exploration [12]. It is conceivable that planetary rovers in
the future will not need to wait for signals to move its
cameras from an operator on earth who is several light seconds
(or years) away. Many other significant applications can be
envisioned.

While the degradation of spatial resolution in the retina has
been modeled accurately by measuring the contrast thresholds
of transient stimuli [13], [14], the fundamental question in
the area of foveated, active artificial vision of ‘How do we
decide where to point the cameras next?’ remains poorly
understood. Despite the seemingly complex mechanisms that
seem to underly the process of active vision, human observers
seem to excel at visual tasks. Based simply on our own daily
experience, the process of gathering visual information atthe
current fixation while simultaneously attending to the variable
resolution visual periphery in search for potentially interesting
regions seems effortless. Thus, an understanding of how the
human visual system selects and sequences image regions for
scrutiny is not only important to better understand biological
vision, it is also the fundamental component of any foveated,
active artificial vision system.

Research into the general area of how humans deploy eye
movements in visual tasks has received significant attention
for many decades [2], [15], [16]. Competing theories for
gaze selection can be broadly classified into two general cat-
egories: top-down (cognitive/high-level) and bottom-up (pre-
cognitive/low-level). Top-down approaches for gaze prediction
emphasize a high-level understanding of the scene and has
been popular in task-specific experiments. Yarbus, in his
pioneering work on eye movements [2], demonstrated that
human eye movements are strongly influenced by high-level
mechanisms such as the specific visual task given to the
observer. Top-down implementations of gaze-selection have
incorporated spatial relationships of object [17] and scene
schema representations [18] and shown significant improve-
ments in search times in visual search tasks. While such top-
down implementations provide possible directions of explo-
ration in gaze selection, cognitive interpretation of scenes is
far from being sufficiently mature to generalize to natural
viewing tasks. Given the rapidity and sheer volume of saccades
during search tasks (over 15,000 each hour), it is reasonable to
suppose that there is a significant bottom-up, computationally
inexpensive component to selecting fixation locations. The
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goal of this paper is to investigate bottom-up, image-based
mechanisms that guide eye fixations. Moreover, we believe
that the development of future high-level visual search systems
may benefit from the insights gained from successful low-level
search strategies.

Bottom-up approaches to gaze selection assume that eye
movements are quasi-random and driven by low-level image
features. They propose a computational model for human gaze
selection based on image processing to accentuate certain
image features that are deemed relevant for drawing gaze.
The influence of certain low-level image features such as
edges and areas of high curvature in drawing fixations was
established as early as 1935 [15], [16]. Williams [19], studied
the influence of color, shape, and size in visual search and
concluded that, among the attributes studied, the color of the
target was the most important image feature in influencing
saccades. More recently, Privitera & Stark [20] used a suite
of algorithms such as detecting symmetry, center-surroundre-
gions in images that resemble receptive field profiles, wavelets,
contrast, and edges-per-unit-area to select points of interest in
an image and found that43%−54% of their fixation selections
overlapped with actual human eye fixations. In another model
inspired by mammalian visual systems [21], an image is first
decomposed into its intensity, color, and orientation channels.
Each feature is then represented by Gaussian pyramids which
are used to compute center-surround responses to enhance
features that differ from their neighbors. Using a normalization
operator, these feature maps are combined across scales and
features to result in conspicuity or saliency maps, whose peaks
identify visually interesting regions. Several modifications to
this general model that include motion parameters [22], novel
combinations of the feature maps, and modulation by high-
level contextual priors have been shown to provide superior
gaze selection results. Torralba [23] proposed a statistical
framework for incorporating high-level contextual information
into such low-level saliency-based models for predicting gaze
in object detection. The use of scene context in conjunction
with saliency maps is shown to correlate better with human
fixations than using only the saliency map to select fixations
in visual search tasks.

Since the human visual system evolved in a natural environ-
ment and natural images occupy a relatively small subspace
of all possible images, it is theorized [24]–[26] that early
visual processing may exploit the statistics inherent in its
environment to represent the input as efficiently as possible.
With the availability of inexpensive, accurate eye trackers,
a recent trend in the bottom-up approach to understanding
gaze has been to directly measure and quantify the differences
in the statistics of image patches at thepoint of gaze of
observers and those selected at random. Reinagelet al. [27]
show that human fixation regions have higher spatial contrast
and spatial entropy than randomly fixated regions, indicating
that the human eye may be trying to select image regions that
maximize the information content transmitted to the visual
cortex. Recently, Parkhurstet al. [28] replicated these results
with various sizes of the patch used to compute the local image
contrast, and found that local image contrast is reliably higher
(statistically significant) than those obtained from patches at

random fixations. They found that the difference in the contrast
statistics between human and random fixations was larger for
intermediate patch sizes, with a maximum difference occurring
around patch sizes of1◦. While these gaze-contingent ap-
proaches have provided insight into the visual features that are
useful for understanding and hence modeling gaze, the ensem-
ble of image patches at observer’s fixations have always been
analyzed at the native resolution of the stimulus. A moment
of introspection suggests that analysis of bottom-up fixation
attractors must actually involve a foveated framework, where
low-level image features that attract subsequent fixationsare
extracted from the visual periphery whose resolution varies
across the visual field. Parkhurstet al. [29] tried to account
for this by incorporating a variable resolution function inthe
model and discovered an improved correlation between points
of high saliency and recorded fixations. However, in their
work, the foveated structure was imposed on the extracted
feature maps and not on the image stimulus. More recently,
gaze contingent filtering in video sequences was found to
provide improved model-predicted salience for some features
such as orientation and flicker [30].

In this paper, we present a gaze-attentive fixation finding
engine (GAFFE) that uses a bottom-up modality for fixa-
tion selection in natural scenes. GAFFE uses a data-driven
framework where eye tracking was first used to evaluate the
contributions of four foveated low-level image features in
drawing fixations of observers. In particular, as describedin
Section II, we recorded the eye movements of29 observers as
they viewed101 calibrated natural images, and attempted to
quantify the differences in the statistics of four image features
(described in Section III): luminance, contrast, and bandpass
outputs of luminance and contrast at observers’ fixations and
fixations selected at random. Following a discussion of the
image analysis at point of gaze, a foveated fixation selection
algorithm that selects image regions in novel scenes as likely
candidates for fixation based upon a linear combination of the
relevant low-level features is presented in Section IV. Finally,
we evaluate the performance of GAFFE by computing the
correlation between the predicted and recorded fixations.

GAFFE introduces several new techniques to gaze selec-
tion as described below. As mentioned before, all previous
approaches to evaluating image statistics at the point-of-gaze
have ignored the foveated sampling of the human visual
system. We address this issue by first foveating the stimulus
at the observer’s current fixation point (using established
models of resolution fall-off in the periphery [13]), and then
analyze the statistics of the various image features using
appropriately blurred versions of image patches centered on
the subsequent fixation. A direct consequence of this is an
eccentricity-based analysis where every image patch around a
fixation is analyzed based on its eccentricity from the previous
fixation. We also introduce contrast-bandpass as a new low-
level feature that is shown to correlate very well with human
fixations. While point-of-gaze analyses have been used before
to quantify the differences in low-level images at human and
randomly selected fixations, this information has not been used
to actually select fixations in novel scenes.
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Fig. 1. Examples of images used for the experiment

II. EYE TRACKING METHODS

GAFFE is based on a gaze-attentive framework; this means
that the features used for fixation selection are those that
are statistically significant at recorded human gaze locations
(when compared to features at randomly selected fixations).
This section describes the experimental procedure that was
used to record human eye movements in a natural viewing
task.

A. Stimuli and Tasks

101 static images of size1024 ∗ 768 pixels were manually
selected from a calibrated gray scale natural image database
[31]. Since we were interested in developing a bottom-up
framework for fixation selection, images containing man-made
structures and features such as animals, faces, and other items
of high-level semantic interest that could have instinctively
attracted attention were omitted. Typical images are shown
in Fig. 1. The stimuli were displayed on a21-inch, gamma
corrected monitor at a distance of134cm from the observer.
The screen resolution corresponded to about1 arc minute per
pixel. Each image was displayed for5 seconds in a fixed order
for all observers.

Observers were instructed to view each of the images as
they desired. All observers began viewing the image stimuli
from the center of the screen. Following the display of each
image, observers were shown a small image patch and asked
to indicate whether the image patch was from the image they
just viewed or not. This task was used to encourage observers
to scan the entire scene. A total of 29 (24 naı̈ve) adult human
volunteers participated in this study. All observers either had
normal or corrected-to-normal vision.

B. Eye Tracking

Human eye movements were recorded using an SRI Gen-
eration V Dual Purkinje eye tracker. It has an accuracy of
< 10 arc minute, and a precision of∼ 1 arc minute. A
bite bar and forehead rest was used to restrict the observer’s
head movements. The observer was first positioned in the eye
tracker and a positive lock established onto the observer’seye.

Fig. 2. Example of an observer’s eye movement trace superimposedon the
image stimulus. The dots are the computed fixations. The square in the center
of the image is the first fixation.

A linear interpolation on a3 × 3 calibration grid was then
done to establish the linear transformation between the output
voltages of the eye tracker and the position of the observer’s
gaze on the computer display. The output of the eye tracker
(horizontal and vertical eye position signals) was sampledat
200Hz and stored for offline data analysis. This calibration
routine was repeated every 10 images, and a calibration test
run after every image.

C. Image Data Acquisition

The gaze coordinates corresponding to the eye movements
of the observers for each trial were divided into fixations
and saccades using spatio-temporal criteria derived from the
known dynamic properties of human saccadic eye movements
[32]. The resulting pattern of fixations for a single trial is
shown by the dots in Fig. 2. The lines show the eye movement
trajectories linking the fixations. As mentioned earlier, we
propose a foveated framework to analyze the statistics of low-
level features of image patches at the resolution at which they
were encoded by the observer. To achieve this, the image
was first foveated at the observer’s current fixation, sayn,
and a patch centered at the subsequent fixation,n + 1, was
extracted for analysis. Thus all image patches were analyzed
at the resolution at which they were encodedprior to fixating
the patch. We then extracted circular patches of diameters
32, 64, 96, 160, 192 pixels centered at each fixation. This cor-
responded to patches of diameter ranging from0.5◦ to 3.2◦.

A consequence of using such a foveated analysis framework
is that the ensemble of patches extracted around fixations
contain image patches that have been blurred to different
extents. Further, it is also possible that saccades of different
magnitudes are driven by different features. Thus, there arises
a need to perform an eccentricity-based analysis of local image
features, where patches of similar blur are grouped together
and the relevant image feature is analyzed separately for each
blur. Tatleret al. [33] have observed that the influence of image
features are not uniform across saccade magnitudes and note
that by ignoring the dependence of image features on saccade



TRANSACTIONS ON IMAGE PROCESSING, NO. XX, XXX 200X 4

magnitudes, prior work in this area ( [27], [28], [34]) generally
tends to estimate the influence of visual features incorrectly.
In our study, since we use a foveated analysis framework, we
analyze patches over the range of spatial frequencies at which
they were processed by the human visual system, and thus
incorporate both saccade and spatial frequency dependenceof
image patches into our analysis.

To perform the eccentricity-based analysis of our image
statistics, each patch in the database was first associated
with the length of the saccade,e (in degrees), that was
executed to reach that particular patch. The distribution of
these saccade magnitudes were quantized into5 bins such
that each bin contained the same number of patches (around
6000) and the patches in each bin were analyzed separately.
Patches with small eccentricity values were blurred less than
patches with larger eccentricity values in accordance with
established models for foveation [13]. The location of the
saccade bin boundaries were:0.03, 1.68, 2.45, 3.45, 4.98, and
14.99 degrees.

III. C OMPUTING LOCAL IMAGE FEATURES

The image patches around observers’ fixation points were
then analyzed to determine if the statistics of the four im-
age features: luminance, contrast, luminance-bandpass, and
contrast-bandpass were statistically different from image
patches that were picked randomly. The randomly selected
patches were obtained by shuffling the fixations of an ob-
server for a particular image with that of a different image.
Thus this image shuffled database simulates a random human
observer whose fixations are not influenced by features of
the underlying image, but otherwise captures all the statistics
of human eye movements. This methodology of simulating
random fixations accounts for both known potential biases of
human eye movements (such as the tendency of observers to
fixate at the image center, and the log-normal distribution of
saccade magnitudes), and unknown biases (such as possible
correlations between magnitude and the angle of the saccades).

For any image feature,S, we were interested in the differ-
ences (and not the absolute values) in the image statistics at
observers’ fixation and randomly selected fixations. Therefore,
for each image,n, we computed the ratio of the average patch
feature at eccentricity,e, at the observers’ fixations,S(e, n)obs

to the average patch feature for image patches from the image
shuffled database,S(e, n)rand, and then averaged this ratio
across theN(= 101) images in the database:

S(e)ratio =
1

N

N
∑

n=1

S(e, n)obs

S(e, n)rand

. (1)

Finally, to evaluate the statistical significance of the image
statistic under consideration, we used bootstrapping [35]to
obtain the sampling distribution of this mean ratio as follows.
Given an image, a set of patches around observers’ fixations
was extracted. From this set, a new collection of image patches
was obtained by sampling with replacement. The feature of
interest (such as patch luminance or RMS contrast) was then
computed for this set of patches. The above process was
repeated for the image-shuffled fixations for that image. The

ratio (1) was then computed across the101 images in the
database to constitute one bootstrap replication. This process
was repeated200 times to obtain the sampling distribution of
the average ratio (1) for that feature and used to identify the
confidence intervals.

The rest of this section describes how each of the four
image features: luminance, contrast, luminance-bandpass, and
contrast-bandpass was computed for an image patch.

A. Luminance Computation

The mean luminance,̄I, for an image patch was computed
using a circular raised cosine weighting function,w as follows:

Ī =
1

M
∑

i=1

wi

M
∑

i=1

Iiwi (2)

where, M is the number of pixels in the patch,Ii is the
grayscale value of the pixel at locationi and the raised cosine
function w is expressed as:

w(i) = 0.5
[

cos
(πri

R

)

+ 1
]

(3)

whereri =
√

(xi − xc)2 + (yi − yc)2 is the radial distance of
a pixel location(xi, yi) from the center of the patch,(xc, yc),
andR is the patch radius.

B. RMS Contrast Computation

For an image patch, a weighted root-mean-squared contrast
using a circular raised cosine weighting function,w, was
computed as:

C =

√

√

√

√

√

√

1
M
∑

i=1

wi

M
∑

i=1

wi

(Ii − Ī)2

(Ī)2
(4)

where M is the number of pixels in the patch,Ii is the
grayscale value of pixel at locationi, and Ī is the mean
luminance of the patch from (2).

C. Bandpass of Patch Luminance

Attention often seems to be drawn to regions that differ
from their surroundings in some aspect. Such regions can be
detected by the outputs of center-surround or, more generally,
bandpass (Gabor) kernels (which have been popular models
for the receptive fields of simple cells in the primary visual
cortex). Thus, the next image feature that we investigated was
the output of Gabor filters operating on the patch luminance.
Of the many Gabor kernels that can be used to filter an
image patch, we used the kernel that best modeled (in a least
squares sense) the spatial frequencies where the human patches
differed significantly from the random patches. In particular,
we computed the ratio of the average FFT magnitudes of the
image patches at point-of-gaze to those at random fixations and
modeled the significant spatial frequencies using least square
fits of Gabor functions (Fig. 6). The technique is described
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in more detail in the Appendix. Having found the bandpass
kernels, the final step involved filtering the image patches
using the kernels. Given an image patchI(e), located at
an eccentricitye from the previous fixation, we select the
Gabor kernel,Gablum(e), corresponding to this eccentricity
bin, and computed the maximum absolute value of the result of
filtering this image patch with the Gabor kernel as our feature:
Glum = max |Gablum(e) ∗ I(e)|, where∗ corresponds to the
convolution operator.

D. Bandpass of Patch Contrast

Finally, bandpass outputs of local image contrast (i.e. con-
trast of contrasts) was used to capture higher order image
structure that is ignored by the luminance Gabors described
in Section III-C. For example, regions whose central and sur-
rounding regions have the same mean luminance, but different
contrast profiles can be captured by this feature. Computing
the contrast-bandpass Gabor kernel is more complicated than
the luminance-bandpass kernels because we first have to com-
pute local image contrast - which itself depends on the size of
neighborhood used to compute the contrast - and then find the
size of the bandpass kernel that maximally separates human
and random patches in the sense of this particular statistic.
To address this issue, we first computed the magnitude of
the local image gradient for each pixel and used this as a
measure of an extremely local (pixel-level) measure of image
contrast. The goal of designing the contrast bandpass kernel
now amounts to determining the spatial scales at which these
local image gradients vary. We then computed the ratios of the
average FFT magnitudes of thegradient patches at point-of-
gaze to those at random fixations and modeled the significant
spatial frequencies using least square fits of Gabor functions.
With the bandpass kernels designed, we repeated the Gabor
filtering as before with the exception that the filtering was
applied to the local patch gradient instead of the patch itself:
Ggrad = max |Gabgrad(e) ∗ |∇I(e)|)|, where∗ corresponds
to the convolution operator,|∇I(e)| is the magnitude of the
gradient of an image patch at eccentricitye, andGabgrad(e)
is the Gabor kernel at this eccentricity.

IV. GAZE-ATTENTIVE FIXATION SELECTION

Luminance and contrast statistics were computed for all the
patch sizes mentioned earlier. However, the bandpass ratios
were computed only for a single patch size of1.6◦ × 1.6◦

due to the computational constraints of finding the optimal
bandpass kernels. This patch size was selected because it
provided the maximum contrast ratio between human and
random fixations. The value of the feature ratio,S(e)ratio,
was computed as described in (1) for the four image features
described in Section III and is plotted as a function of saccade
magnitude,e, in Fig. 3 for a patch size of1.6◦×1.6◦. The error
bars represent a 90% confidence interval obtained from the
200 bootstrap replications. First, we note that for all features,
the mean value ofS(e)ratio is significantly higher than1.0,
which implies that the image patches around human fixations
had, on average, higher values for each of these features than
the image patches selected at randomat all eccentricities.
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Fig. 3. Plots of the average feature ratios,S(e)ratio, as a function of
saccade magnitude. Error bars denote90% confidence intervals obtained via
bootstrapping. The patch size used for computing the features was96 × 96
pixels (1.6◦ × 1.6◦).

Second, by examining the actual values of the ratios, we found
that contrast-bandpass showed the greatest difference between
human and random fixations (maximum ratio of 1.3, average
of 1.2), followed by luminance-bandpass (maximum of 1.23,
average of 1.16), RMS contrast (max of 1.12, average of 1.09),
and finally luminance (max of 1.04, average of 1.01). Contrast-
bandpass (or contrast of contrasts) could correspond to regions
with a clear distinction of foreground and background, and
thus instinctively draw human fixations and produce a very
high value for theS(e)ratio. Our results agree with Tatleret
al.’s [33] findings that short saccades are more image feature
dependent than long saccades. In summary, the point-of-gaze
analysis shows that image patches selected by human ob-
servers have higher luminance, contrast, and stronger bandpass
profiles than randomly selected patches. In a related study
[36], we have also discovered that a full-resolution analysis for
these features produces similar results, but underestimates the
influences of contrast-related features; the resulting ratios were
found to be higher (statistically significant) for the foveated
patches. In Section IV-B, we also show that the foveated
framework perfoms better than the full-resolution analysis in
gaze selection.

Since these statistics were obtained directly from the fixa-
tions of human observers, these findings can also be used to
select fixations in new scenes in a manner that mimics the
fixation pattern of human observers. The remainder of this
section presents a simple algorithm that uses these visually
important image features to select fixations in a new scene.
Given an image, the algorithm begins by selecting the centerof
the image as the first fixation point. This selection is consistent
with previous findings that observers tend to first fixate at the
middle of the image stimulus [37]. To simulate the foveated
encoding of the human visual system, the image is then
foveated around this central fixation point. The foveated image
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is then filtered to create a saliency map for each of the four
features discussed earlier. Saliency maps for luminance and
contrast are computed using a fixed kernel size of1.6◦× 1.6◦

pixels. Saliency maps for the bandpass kernels are obtained
using the five Gabor kernels (one per saccade bin) obtained
as described in the Appendix. The filtering process for the
bandpass kernels is space-variant - i.e. the type of kernel that is
used at a certain location in the image depends on the distance
of that location from the current fixation point. Therefore,
image regions that are nearest to the current fixation point are
filtered with the kernel corresponding to the small magnitude
saccade bins in Fig. 6, and points that are farther are filtered
using the corresponding kernel from a large magnitude saccade
bin. Since the kernels in Fig. 6 were computed for5 saccade
bins, the resulting filtered image has5 circular regions of
filtered outputs. The filtered output can be interpreted simply
as a likelihood map in which regions with large values are
more likely to draw a fixation than those regions with lower
values. The four feature maps were then linearly combined
using a weighted average where the weights for each of the
feature maps were selected to be proportional to the maximum
value of the ratio values they generated in the comparison
against randomly selected patches. Thus the weights for thelu-
minance, contrast, luminance-bandpass, and contrast-bandpass
from Fig. 3 were 1.04, 1.12, 1.23, and 1.30 respectively. The
weights were normalized to sum to unity. The algorithm uses
a greedy criterion in selecting the maximum value from this
weighted selection map as the next fixation point, foveates
the image around this point, and repeats this process. The
resulting selection map was also weighted using an inverted
Gaussian mask centered on each selected fixation point. This
masking simulates an inhibition-of-return mechanism [38]and
prevents the future fixation selections from landing very close
to previously selected fixations. At each stage, to alleviate
boundary artifacts of filtering, the selection map was also
weighted with a rectangular mask that had a value of ones
in the center and tapered sharply towards zero at the image
boundaries.

A. Qualitative Comparison of Fixation Selections

Figure 4 qualitatively illustrates the performance of the
fixation selection algorithm. For visualization purposes,the
fixations of 29 observers on these images were clustered
using a density-constrained clustering algorithm, wherein the
growth of the cluster is constrained by a minimum density
requirement. In other words, the cluster is allowed to grow
in size only if the new cluster contains a minimum number
of fixations per unit area. Details of the implementation of a
density-based algorithm, DBSCAN, can be found in [39]. A
density constraint that required at least four fixations in a1◦

region of a cluster produced reasonable clusters in these tests.
Ten clusters with the maximum density of fixations are shown
as ellipses in Fig. 4. The fixation selection algorithm was
used to select a sequence of 10 fixations, each of which was
represented by a 2D Gaussian window, illustrated by the bright
regions in Fig. 4. The full width at half-max of the Gaussian
roughly equaled the diameter of the human foveola (about1◦

visual angle). The degree of overlap between the ellipse and
the bright regions is a subjective measure of the performance
of GAFFE. An objective measurement is presented in the
following section.

B. Quantitative Comparisons of Fixation Selections

In section IV-A, we demonstrated qualitatively that fixa-
tions can be selected using a linear combination of low-level
image features. Quantifying the similarity between recorded
fixations and those selected by an algorithm generally involve
clustering human fixations into regions that are then compared
with fixations selected by the algorithm using string-matching
algorithms [20]. Other methods of comparing human fixations
to predictions are discussed in [40]. In our experiments, since
there were many fixations per image (about 300), we opted
to extrapolate this human eye fixation data to a pseudo-dense
fixation selection map similar to the method used in [40]. First,
given an image, each recorded fixation for that image was
represented by a 2D Gaussian window whose full-width at
half max was selected to be a1◦ of visual angle as in Section
IV-A. Then, the fixation selection algorithm was used to select
10 fixation points, each of which was again represented by a
2D Gaussian window. The resulting maps, when normalized
to sum to unity, can be viewed as two dimensional probability
density maps, where peaks correspond to regions with a
high probability of drawing an observer’s fixation. We then
computed a zero-lag correlation between these two maps to
quantify the degree of overlap between the fixations selected
by the algorithm and the recorded fixations. As mentioned
earlier, the first fixation for GAFFE was manually selected
at the image center to match the oberservers’ task. To avoid
spurious correlations due to this set up, we ignored the first
fixation from both recorded and predicted fixations before
computing the correlation coefficients.

Figure 5 shows the average correlation values between
the recorded fixations and the fixations generated by the
four image features (luminance, RMS contrast, luminance-
bandpass, contrast-bandpass) discussed earlier. The error bars
represent standard errors. Since the ‘combined’ feature weights
the contrast-bandpass most heavily, its correlation is only
marginally higher than the contrast-bandpass. Finally, wealso
computed the correlation coefficient for a full-resolutionmodel
that uses the same four image features as above, but without a
foveated framework, and for another popular saliency model
for fixation selection [21]. We note that, in general, the
fixations selected by the foveated analysis correlates better
with the recorded fixations than those generated by the full-
resolution models. The lower bound on the correlation coef-
ficient is obtained by randomly selecting the same number of
fixation locations as the algorithm. We see from the correlation
plots, that all image features perform better than a random
fixator, with the combined feature map producing the best
correlation to recorded fixations. The upper bound on the
correlation coefficient is determined by the variability infixa-
tion locations across observers. This inter-observer variability
was measured by separating observers into two groups and
computing the correlation in the fixation maps between the
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two groups. The upper bound was found to be around 0.75 for
our database, suggesting further room for improvement from
other bottom-up or a combination of bottom-up and top-down
features.

For our simulations, we used 10 fixations since it repre-
sented the average number of fixations executed by an observer
for an image in our experiment. In an another analysis,
we gradually increased the number of fixations selected by
GAFFE (from 1 to 10) and found that the difference in
correlation coefficients between the various features decreased.
It is likely that with a large number of fixations, the inhibition-
of-return simply forces future fixations to span the entire
image, thereby resulting in a similar value of the correlation
coefficient. To evaluate the influence of fixation durations
on the correlation analysis, we also computed the correla-
tion coefficient between fixations selected by GAFFE and a
pseudo-dense map of recorded fixations where each fixation
was replaced by a Gaussian whose amplitude was scaled
in proportion to the duration of the corresponding fixation.
The correlation coefficients were found to be lower when
the fixation durations were included. This decrease can be
attributed to the fact that GAFFE weights all fixations equally,
whereas in reality, some fixations are more salient than the
others.

V. CONCLUSION

The interplay of top-down (high-level/cognitive) mecha-
nisms such as image understanding and bottom-up (low-level/
pre-cognitive) image features (such as edges, contrast and
motion) influence eye movements in many intricate ways,
making the task of accurately modeling gaze a formidable
task. However, analysis of stimuli at observers’ point of gaze
can provide an understanding of strategies used by observers
in visual tasks. In this paper, we presented GAFFE: a bottom-
up, data-driven procedure wherein eye tracking is first usedto
measure the influence of four foveated low-level image fea-
tures (luminance, contrast, luminance-bandpass, and contrast-
bandpass) in drawing the fixation of human observers. The
foveated image features thus computed are used to select
fixations in novel scenes and are shown to correlate well

with the fixations selected by human observers. Contrast-
bandpass is shown to provide the best correlation amongst
the four features studied. The matlab code for GAFFE can
be downloaded fromhttp://live.ece.utexas.edu/
research/gaffe. In the near future, as a service to the
community, we will be providing free access to the entire
collection of eye movements. The accompanying manuscript,
DOVES: A Database of Visual Eye Movements, is currently
under review.

While this paper presented the selection of visual fixations
in the absence of any particular visual task, we have also
used a similar gaze-contingent analysis framework to discover
strategies used by human observers in a visual search task
where observers searched for simple geometric targets suchas
horizontal edges and triangles embedded at very low signal-
to-noise ratios in noise stimuli that had the spectral charac-
teristics of natural images. By analyzing properties of the
noise stimulus at observers’ fixations, we were able to reveal
idiosyncratic, target-dependent features used by observers in
the visual search task [41], [42]. The extracted features were
also found to be effective in selecting potential locationsof
targets that matched human fixations in novel noise stimuli
[43].

The performance of GAFFE has been tested only on a
specific collection of outdoor natural scenes, with features ex-
tracted at a single scale that was based on a particular viewing
scenario. A natural extension of this work would involved
a multi-scale analysis of the relevant features, which can
include higher order features such as orientation, texture, and
structure amongst others [44]. Recently, it has been shown that
luminance and contrast are statistically independent features in
natural images [45]. Thus, it is reasonable to assume that the
saliency maps contributed by these two features to the fixation
selection map are not overly redundant. Further analysis is
required to evaluate the contributions of the other features to
the saliency map, and the effect of these features on different
datasets of images [28]. A related issue is one of feature
combination. As seen in Fig. 5, a simple linear combination of
the features is only marginally better (in terms of correlation)
than using the contrast-bandpass as a fixation predictor. Wecan
envision an image-dependent weighting of the features, where
weights are computed dynamically based on the distribution
of the four foveated features in the image. The inhibition-of-
return mechanism in GAFFE is rather unnatural in that it never
allows future fixations to land near previously fixated regions.
A decay factor can be incorporated into this mechanism to
allow GAFFE to return to previous fixation locations after a
certain number of fixations. Additionally, one could incorpo-
rate well-known observer idiosyncrasies such as the tendency
to fixate at the image center. Incorporating such a return-to-
center mechanism after a certain number of fixations would
allow the algorithm to ‘reset’ and explore previously ignored
regions of the image. As mentioned earlier, it might also be
useful to incorporate fixation dwell times in the analysis of
image features for fixation selection. Another bugaboo in gaze
prediction is the design of a quantitative metric for comparing
predicted fixations with recorded fixations. We chose the
correlation coefficient over other approaches such as string-
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editing and Kullback-Leibler divergence owing to its ease
of interpretation. However, it is possible that the quantitative
comparisons between recoded and predicted fixations can be
greatly simplified by assuming that the pseudo-dense map
of recorded fixations represents a true probability of fixation
locations for the image, and comparing the log-likelihood
for the different sets of predicted fixations. This procedure
obviates the need to estimate a dense probability distribution
from only 10 predicted fixations. Finally, we note that GAFFE
does not predict the sequence of fixations of observers; instead
it selects regions that will, on average, be selected by human
observers. Modeling the sequence of fixations, however, is
much more challenging than predicting their locations [20].

APPENDIX

BANDPASS KERNEL DESIGN

To compute the bandpass kernel that provides maximum
separation between human and random patches, we could
resort to a brute force approach by changing various pa-
rameters of the bandpass kernel (such as full width at half-
max, shape, and orientation). The following is an alternative
approach that involves designing the kernels in the Fourier
domain. We begin by locating the spatial frequencies where
the human patches differ significantly from the random patches
as follows. Given a patchp in imagei located at an eccentricity
e from the previous fixation, the ratio of the average discrete
Fourier transforms (DFT) of image patches at point of gaze,
FFT (p, e)|PoG, to the discrete Fourier transform of patches
selected randomlyFFT (p, e)|Rand was computed:

Fratio(i, e) =

1
P (i,e)

P (i,e)
∑

p=1
abs(FFT (p, e))|PoG

1
R(i,e)

R(i,e)
∑

r=1
abs(FFT (r, e))|Rand

(5)

whereP (i, e) andR(i, e) correspond to the number of image
patches at human and random fixations respectively. The
average value of this ratio across all images is computed as

Fratio(e) =
1

N

N
∑

i=1

Fratio(i, e) (6)

where N is the number of images in the database. Prior to
computing the DFT, each image patch was first windowed
using a raised cosine window to avoid edge effects.

Figure 6 shows the plots ofFratio(e) for a patch size of
1.6◦ × 1.6◦ for various saccade eccentricities,e. Each panel
in the top row of Fig. 6 corresponds to a ratio of centered
DFTs, and thus the central regions in each plot corresponds to
low spatial frequencies with spatial frequency increasingaway
from the center.

Since we are looking at ratios of magnitudes of DFTs
of patches selected by human fixations to those from the
image-shuffled fixation, spatial frequencies with ratio-values
greater than1.0 (shown in white) have higher energy in
the point-of-gaze patches (and therefore influence observers’
gaze). Similarly, spatial frequencies with values close to1.0

Fig. 6. Design of Bandpass kernels. The top row shows plots ofFratio(e)
as a function of saccade magnitude for a patch size of1.6◦ × 1.6◦ pixels.
Each column corresponds to the saccade bin in which the DFT analysis was
performed (the bins are indicated on the title). The x and y axis on these plots
correspond to cycles per degree. All plots have been plottedusing the same
colormap. The bottom row shows the corresponding best fittingGabors.

(shown by dark regions) do not play an important role in
drawing fixations because their energy is similar to the image
shuffled patches. Finally, to locate the statistically significant
spatial frequencies, the FFT ratios were bootstrapped and
100 bootstrap estimates ofFratio(e) were computed. Spatial
frequencies that were statistically different from1.0 were
selected and modeled using Gabor kernels using numerical
optimization routines in Matlab. The resulting fits are shown in
the bottom row of of Fig. 6 are indeed a coarse approximation,
and better models for relevant spatial frequencies can be used.
The effect of foveation manifests itself by highlighting the
lower frequencies at larger saccade magnitudes. This is ex-
pected because, for large saccades the patches are foveatedto a
greater extent, and therefore the region of relevant frequencies
gets smaller.
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