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GAFFE: A Gaze-Attentive Fixation Finding Engine
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Abstract— The ability to automatically detect visually interest- image quality assessment [8], automated object detection,
ing regions in images has many practical applications, especially autonomous vehicle navigation, and real-time, foveategwi
in the design of active machine vision and automatic visual compression [9], [10]. Also, the ability to understand and

surveillance systems. Analysis of the statistics of image features a d t radiologist t d e
observers’ gaze can provide insights into the mechanisms of fix- reproauce an expert radlologists €ye movements cou us

ation selection in humans. Using a foveated analysis framework, in Semi-automated detection of lesions in digital mammuogra
we studied the statistics of four low-level local image features: [11] - a problem of life-saving significance. Machine vision

luminance, contrast, and bandpass outputs of both luminance and systems that can actively select visually interesting aesji
contrast, and discovered that image patches around human fixa- in an image also find applications in the area of planetary

tions had, on average, higher values of each of these featuresath lorati 120 It | ivable that ol ¢ .
image patches selected at random. Contrast-bandpass showedeXp'oration [12]. IS conceivable thal planetary rovers |

the greatest difference between human and random fixations, the future will not need to wait for signals to move its
followed by luminance-bandpass, RMS contrast, and luminance. cameras from an operator on earth who is several light second

Using these measurements, we present a new algorithm that(or years) away. Many other significant applications can be

selects image regions as likely candidates for fixation. Theseenvisioned.

regions are shown to correlate well with fixations recorded from . . . L .

human observers. While the degradation of spatial resolution in the retina has
been modeled accurately by measuring the contrast thiashol

of transient stimuli [13], [14], the fundamental questian i

the area of foveated, active artificial vision of ‘How do we

decide where to point the cameras next?’ remains poorly

I. INTRODUCTION understood. Despite the seemingly complex mechanisms that

seem to underly the process of active vision, human observer

a slew of visual data, from which it actively selects angoom to excel at visual tasks. Based simply on our own daily

o ; . . . L erience, the process of gathering visual informatiothet
assimilates relevant visual information in an efficient an(aXp P 9 9

. . : ._current fixation while simultaneously attending to the able
seemingly effortless manner. Despite a large field of view . . . . . L

. ” resolution visual periphery in search for potentially netgting
the human visual system processes only a tiny central region .

(the fovea) with great detail while the resolution dropsidgp Ligrl]oannsvsi'sjg?z esifg;glzseslé;:uasa dageuﬁgi::?r;rﬂggeo:eh(i)c\)/\ésﬂ}ir
towards the periphery [1]. Such faveated visual encoding y q ge reg

. _scrutiny is not only important to better understand biatagi
gision, it is also the fundamental component of any foveated

Index Terms— Eye tracking, Point-of-gaze, Foveation, Fixation
selection

The human visual system is constantly bombarded wi

data glut. To assimilate visual information and build a deta . e
. . . . : : active artificial vision system.
representation from this multi-resolution visual inpute thu- :
! i . . Research into the general area of how humans deploy eye
man visual system uses a dynamic process of actively sgannin S . L .
. ) AP ) . - movements in visual tasks has received significant attentio
the visual environment using fixations linked by rapid, istitt

eye movements called saccades [2]; most visual informati]éyonr many decades [2], [15], [16]. Competing theories for

. : . L . . .. gaze selection can be broadly classified into two general cat
is acquired during a fixation and little or no information IS yories: ton-down (cognitive/high-level) and bottom-ype¢
gathered during a saccade [3]. 9 - top 9 9 o

The active nature of looking, as instantiated in the humacr?gmtwe/low—level). Top-down approaches for gaze prton

. . : em&)hasize a high-level understanding of the scene and has
visual system, promises to have advantages in both speed an . o : L
een popular in task-specific experiments. Yarbus, in his

reduced storage requirements in artificial vision systemis a

. ioneering work on eye movements [2], demonstrated that
well. In fact, several foveated vision sensor arrays hawn beﬁ

designed and used in real-time imaging systems [4]-[6]. Thgman eye movements are strongly influenced by high-level

next generation of efficient, foveated, active vision &7] mechanisms such as the specific visual task given to the

: : . observer. Top-down implementations of gaze-selectiore hav

could potentially be applied to a diverse array of probleoths . . ; . .
o . incorporated spatial relationships of object [17] and scen
as automated pictorial database query, image understandin . o X
schema representations [18] and shown significant improve-
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goal of this paper is to investigate bottom-up, image-baseahdom fixations. They found that the difference in the csttr
mechanisms that guide eye fixations. Moreover, we beliesttistics between human and random fixations was larger for
that the development of future high-level visual searcliesys intermediate patch sizes, with a maximum difference oaogirr
may benefit from the insights gained from successful lovellevaround patch sizes of°. While these gaze-contingent ap-
search strategies. proaches have provided insight into the visual featureisatea
Bottom-up approaches to gaze selection assume that egeful for understanding and hence modeling gaze, the ensem
movements are quasi-random and driven by low-level imagée of image patches at observer’s fixations have always been
features. They propose a computational model for human gazelyzed at the native resolution of the stimulus. A moment
selection based on image processing to accentuate certdinntrospection suggests that analysis of bottom-up fixati
image features that are deemed relevant for drawing gaa#tractors must actually involve a foveated framework, iehe
The influence of certain low-level image features such #®w-level image features that attract subsequent fixatames
edges and areas of high curvature in drawing fixations westracted from the visual periphery whose resolution warie
established as early as 1935 [15], [16]. Williams [19], &dd across the visual field. Parkhurat al. [29] tried to account
the influence of color, shape, and size in visual search afwi this by incorporating a variable resolution functiontire
concluded that, among the attributes studied, the coloh®f tmodel and discovered an improved correlation between goint
target was the most important image feature in influencirgg high saliency and recorded fixations. However, in their
saccades. More recently, Privitera & Stark [20] used a suieork, the foveated structure was imposed on the extracted
of algorithms such as detecting symmetry, center-surroand feature maps and not on the image stimulus. More recently,
gions in images that resemble receptive field profiles, veasel gaze contingent filtering in video sequences was found to
contrast, and edges-per-unit-area to select points afeisttén provide improved model-predicted salience for some festur
an image and found thdB% —54% of their fixation selections such as orientation and flicker [30].

overlapped with actual human eye fixations. In another model . L .
o . : . . In this paper, we present a gaze-attentive fixation finding
inspired by mammalian visual systems [21], an image is first

decomposed into its intensity, color, and orientation cleds engine (GAFFE) that uses a bottom-up modality for fixa-

. . . tion selection in natural scenes. GAFFE uses a data-driven
Each feature is then represented by Gaussian pyramids whic . )

ramework where eye tracking was first used to evaluate the
are used to compute center-surround responses to enhanc

features that differ from their neighbors. Using a normatlan con%r]bunc.)ns. of fourfoveated Iow—IeveI. 'mage feature_s n
dra\c/%/mg fixations of observers. In particular, as descriled

operator, these feature maps are combined across scalessa\n :
; L : ection Il, we recorded the eye movement2®bbservers as
features to result in conspicuity or saliency maps, whos&ge

identify visually interesting regions. Several modificais to they viewed101 calibrated natural images, and attempted to

this general model that include motion parameters [22]ehovO|uantlfy the differences in the statistics of four imagetdeas

o ; ; Edescribed in Section IIl): luminance, contrast, and basdp
combinations of the feature maps, and modulation by high- . e
. .outputs of luminance and contrast at observers’ fixatiorts an

ior . . ) )
gaze selection results. Torralba [23] proposed a staﬁlstiﬁxaﬂons selected at random. Following a discussion of the

framework for incorporating high-level contextual infaation image analysis at point of gaze, a foveated fixation selectio

) . - algorithm that selects image regions in novel scenes aly like
into such low-level saliency-based models for predictiagey . e . S

: : . . . .candidates for fixation based upon a linear combination @f th
in object detection. The use of scene context in conjunctign : X . !

: . . . relevant low-level features is presented in Section 1V alyn
with saliency maps is shown to correlate better with human :
o . . .. we evaluate the performance of GAFFE by computing the
fixations than using only the saliency map to select fixations . . L
o correlation between the predicted and recorded fixations.
in visual search tasks.

Since the human visual system evolved in a natural environ-GAFFE introduces several new techniques to gaze selec-
ment and natural images occupy a relatively small subspdim as described below. As mentioned before, all previous
of all possible images, it is theorized [24]-[26] that earlapproaches to evaluating image statistics at the poigaeé
visual processing may exploit the statistics inherent # ihave ignored the foveated sampling of the human visual
environment to represent the input as efficiently as possibsystem. We address this issue by first foveating the stimulus
With the availability of inexpensive, accurate eye traskerat the observer's current fixation point (using established
a recent trend in the bottom-up approach to understandimgpdels of resolution fall-off in the periphery [13]), andeth
gaze has been to directly measure and quantify the diffeeenanalyze the statistics of the various image features using
in the statistics of image patches at tpeint of gaze of appropriately blurred versions of image patches centered o
observers and those selected at random. Reiraigal [27] the subsequent fixation. A direct consequence of this is an
show that human fixation regions have higher spatial contrazcentricity-based analysis where every image patch draun
and spatial entropy than randomly fixated regions, indicgati fixation is analyzed based on its eccentricity from the presi
that the human eye may be trying to select image regions tifiaation. We also introduce contrast-bandpass as a new low-
maximize the information content transmitted to the visudvel feature that is shown to correlate very well with human
cortex. Recently, Parkhurst al. [28] replicated these resultsfixations. While point-of-gaze analyses have been used &defor
with various sizes of the patch used to compute the localématp quantify the differences in low-level images at human and
contrast, and found that local image contrast is reliabjjhbar  randomly selected fixations, this information has not besadu

(statistically significant) than those obtained from patlat to actually select fixations in novel scenes.
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Fig. 1. Examples of images used for the experiment Fig. 2. Example of an observer's eye movement trace superimposée
image stimulus. The dots are the computed fixations. The sqgudhe icenter
of the image is the first fixation.

II. EYE TRACKING METHODS
GAFFE is based on a gaze-attentive framework; this meagSjinear interpolation on & x 3 calibration grid was then

that the features used for fixation selection are those thfdne to establish the linear transformation between theubut
are statistically significant at recorded human gaze lonati voltages of the eye tracker and the position of the observer
(when compared to features at randomly selected fixationgy;e on the computer display. The output of the eye tracker
This section describes the experlmental_ procedure thgt WR8rizontal and vertical eye position signals) was sampled
used to record human eye movements in a natural viewingorr, and stored for offline data analysis. This calibration
task. routine was repeated every 10 images, and a calibration test

run after every image.
A. Simuli and Tasks

101 static images of siz&024 « 768 pixels were manually C. |mage Data Acquisition

selected from a calibrated gray scale natural image daetabasThe gaze coordinates corresponding to the eye movements

E?;gﬁeag:;(efovgzx\;\lt?czﬁ s'g}g(r;’izfdi”':; Zivsg)%ﬁ);?r?ina r?g:gg;& the observers for each trial were divided into fixations
' 9 9 and saccades using spatio-temporal criteria derived fioen t

s':cr%ci;tl;]relsva?d fer:;ttt:]rties Is;\t:c? ats te;]m{nals,lga(;]es\,/, a?nd tc.ﬂa Itknown dynamic properties of human saccadic eye movements
ot nign-ievel semantic interest that cou ave instirelyv 32]. The resulting pattern of fixations for a single trial is

attracted attention were omitted. Typical images are sho Rown by the dots in Fig. 2. The lines show the eye movement

Icnorlitle%teld -r:;enitsc:'rmautlIaW;;?agfggfcdmofr; c?irr;l?ﬁ:’o%zzrr\?; trajectories linking the fixations. As mentioned earliere w
The screen resolution corresponded to akloatc minute per. propose a foveat_e d framework to analyze the_ statisticsm‘ lo
pixel. Each image was displayed foseconds in a fixed order level features of image patches at the res_olutlon .at whle;_z th

: were encoded by the observer. To achieve this, the image

forC)Ek;”s;g:)\feerrsv?/\i.re instructed to view each of the images was first foveated at the observer’'s current fixation, say
9 d a patch centered at the subsequent fixatios, 1, was

they desired. All observers began viewing the image St'm%i}{(tracted for analysis. Thus all image patches were andlyze

from the center of the screen. Following the display of eac qu resolution at which they were encogibr to fixating

image, observers were shown a small image patch and asE]ee patch. We then extracted circular patches of diameters

o indicate whether the image patch was from the image th§¥ 64,96, 160,192 pixels centered at each fixation. This cor-

just viewed or not. This task was used to encourage 0bserv%§ponded to patches of diameter ranging fi@s? to 3.2°

:/%E%?g;gpﬂ:::;?p:gg%'?hﬁgtzltﬂyzgpjlz ngil:g ;ﬂ%ﬂ . A consequence of using such a foveated analysis framework
normal or corrected-to-normal visioﬁ is thqt the ensemble of patches extracted around fl?(atlons
’ contain image patches that have been blurred to different
) extents. Further, it is also possible that saccades ofreliite
B. Eye Tracking magnitudes are driven by different features. Thus, thésesir
Human eye movements were recorded using an SRI Genaeed to perform an eccentricity-based analysis of locajan
eration V Dual Purkinje eye tracker. It has an accuracy ¢atures, where patches of similar blur are grouped togethe
< 10 arc minute, and a precision of 1 arc minute. A and the relevant image feature is analyzed separately &r ea
bite bar and forehead rest was used to restrict the obsgrvétur. Tatleret al. [33] have observed that the influence of image
head movements. The observer was first positioned in the égatures are not uniform across saccade magnitudes and note
tracker and a positive lock established onto the obsereges that by ignoring the dependence of image features on saccade
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magnitudes, prior work in this area ( [27], [28], [34]) geaky ratio (1) was then computed across th@l images in the

tends to estimate the influence of visual features incdyectdatabase to constitute one bootstrap replication. Thisga®

In our study, since we use a foveated analysis framework, was repeate@00 times to obtain the sampling distribution of

analyze patches over the range of spatial frequencies ahwhihe average ratio (1) for that feature and used to identiéy th

they were processed by the human visual system, and tlwesfidence intervals.

incorporate both saccade and spatial frequency dependénce The rest of this section describes how each of the four

image patches into our analysis. image features: luminance, contrast, luminance-bandpasks
To perform the eccentricity-based analysis of our imagmntrast-bandpass was computed for an image patch.

statistics, each patch in the database was first associated

with the length of the saccade, (in degrees), that was A. Luminance Computation

executed to reach that particular patch. The distributibn o ) _ i
these saccade magnitudes were quantized dntins such ~ 1N€ mean luminance, for an image patch was computed

that each bin contained the same number of patches (aro#F{'9 & circular raised cosine weighting functianas follows:
6000) and the patches in each bin were analyzed separately.

M
Patches with small eccentricity values were blurred leas th I= L Z Tw; 2)
patches with larger eccentricity values in accordance with % w. i=1
established models for foveation [13]. The location of the =0

saccade bin boundaries werk03, 1.68,2.45, 3.45,4.98, and

where, M is the number of pixels in the patcH; is the
14.99 degrees.

grayscale value of the pixel at locatiérand the raised cosine
function w is expressed as:
I1l. COMPUTING LOCAL IMAGE FEATURES

The image patches around observers’ fixation points were w(i) = 0.5 [COS (7”‘1) n 1} 3)
then analyzed to determine if the statistics of the four im- R
age features: luminance, contrast, luminance-bandpask, wherer; = \/(z; — z.)% + (v; — y.)? is the radial distance of
contrast-bandpass were statistically different from imag pixel location(z;, ;) from the center of the patcliz., y.),
patches that were picked randomly. The randomly selectedd R is the patch radius.
patches were obtained by shuffling the fixations of an ob-
server f_or_a particular image with th_at of a different IMages 1S Contrast Computation
Thus this image shuffled database simulates a random human
observer whose fixations are not influenced by features ofFOr an image patch, a weighted root-mean-squared contrast
the underlying image, but otherwise captures all the sigis USing a circular raised cosine weighting function, was
of human eye movements. This methodology of simulatirfgPmputed as:
random fixations accounts for both known potential biases of

human eye movements (such as the tendency of observers to 1 XM (I, — )2
fixate at the image center, and the log-normal distributibn o C= M Zwi (I)? (4)
saccade magnitudes), and unknown biases (such as possible > w; =1

=1

correlations between magnitude and the angle of the sagcade

For any image feature§, we were interested in the differ-where M is the number of pixels in the patcH; is the
ences (and not the absolute values) in the image statidticgyeyscale value of pixel at locatiofy and I is the mean
observers’ fixation and randomly selected fixations. Tleeeef luminance of the patch from (2).
for each imagep, we computed the ratio of the average patch
feature at eccentricity, at the obs_:ervers' fixations)(e, n)obs_ C. Bandpass of Patch Luminance
to the average patch feature for image patches from the image . i )
shuffled databaseS(e, n),qnq, and then averaged this ratio Attention often seems to be drawn to regions that differ

across theV (= 101) images in the database: from their surroundings in some aspect. Such regions can be
detected by the outputs of center-surround or, more gdyeral
. 1 X S(e,1) obs bandpass (Ga_lbor). kernels (which have_ been pppular models
S(€)ratio = N > Sl ) (1)  for the receptive fields of simple cells in the primary visual
=1 bl ran

cortex). Thus, the next image feature that we investigatasl w
Finally, to evaluate the statistical significance of the gma the output of Gabor filters operating on the patch luminance.
statistic under consideration, we used bootstrapping {85] Of the many Gabor kernels that can be used to filter an
obtain the sampling distribution of this mean ratio as f@o image patch, we used the kernel that best modeled (in a least
Given an image, a set of patches around observers’ fixatigtpiares sense) the spatial frequencies where the humdegatc
was extracted. From this set, a new collection of image atcldiffered significantly from the random patches. In parteul
was obtained by sampling with replacement. The feature wk computed the ratio of the average FFT magnitudes of the
interest (such as patch luminance or RMS contrast) was thiarmage patches at point-of-gaze to those at random fixatiotis a
computed for this set of patches. The above process waedeled the significant spatial frequencies using leasarequ
repeated for the image-shuffled fixations for that image. Thigs of Gabor functions (Fig. 6). The technique is described
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in more detail in the Appendix. Having found the bandpas Patchsize= 1.6°

ke_rnels, the final step involveq filtering the image patche 1* ‘ —S Contrast-bandpass
using the _kgrnels. Given an image pa_tdf(‘e), located at | .| ik?wméncagﬁter;gtandpass’
an eccentricitye from the previous fixation, we select the —5— Luminance

Gabor kernel,Gaby.,.(e), corresponding to this eccentricity — 1.3f
bin, and computed the maximum absolute value of the result

filtering this image patch with the Gabor kernel as our featur _ %% I
Grum = max |Gaby,m(e) * I(e)], wherex corresponds to the E 1.2l i
convolution operator. o @
% 1.15+ s
&
D. Bandpass of Patch Contrast 11k 1

Finally, bandpass outputs of local image contrast (i.e- co
trast of contrasts) was used to capture higher order ima 19/ KH\Q—
structure that is ignored by the luminance Gabors describ
in Section IlI-C. For example, regions whose central and st
rounding regions have the same mean luminance, but differ: 0.95, 16 24 32 a9
contrast profiles can be captured by this feature. Computi Saccade size in deg
the contrast-bandpass Gabor kernel is more complicated tha _
the luminance-bandpass kernels because we first have to cii-3-  Plots of the average feature ratidsie) atio, as a function of
pute local image contrast - which itself depends on the size JEcede magni. Etor bas der confdence trvals otaned v
neighborhood used to compute the contrast - and then find hels @.6° x 1.6°).
size of the bandpass kernel that maximally separates human
and random patches in the sense of this particular statistic

To address this issue, we first computed the magnitude bcond, by examining the actual values of the ratios, wedoun
the local image gradient for each pixel and used this asy@yt contrast-bandpass showed the greatest differencedet
measure of an extremely local (pixel-level) measure of €nagman and random fixations (maximum ratio of 1.3, average
contrast. The goal of designing the contrast bandpass |kel’8§1_2), followed by luminance-bandpass (maximum of 1.23,
now amounts to determining the spatial scales at which thea??erage of 1.16), RMS contrast (max of 1.12, average of 1.09)
local image gradients vary. We then computed the ratiosef thq finally luminance (max of 1.04, average of 1.01). Coltras
average FFT magnitudes of tigeadient patches at point-of- pandpass (or contrast of contrasts) could correspond toneg
gaze to those at random fixations and modeled the significgfn a clear distinction of foreground and background, and
spatial frequencies using least square fits of Gabor fumgtiot s instinctively draw human fixations and produce a very
With the bandpass kernels designed, we repeated the qugah value for theS(e),q¢i0. OUr results agree with Tatlet
filtering as before with the exception that the filtering wag; 'g [33] findings that short saccades are more image feature
applied to the local patch gradient instead of the patcm:itsedependent than long saccades. In summary, the point-ef-gaz
Ggraa = max|Gabgraa(e) * [VI(e))|, wherex corresponds analysis shows that image patches selected by human ob-
to the convolution operator\V/(e)| is the magnitude of the seryers have higher luminance, contrast, and strongeplasd
gradient of an image patch at eccentricityand Gabgraa(€)  profiles than randomly selected patches. In a related study

A
—A
%

is the Gabor kernel at this eccentricity. [36], we have also discovered that a full-resolution arialfer
these features produces similar results, but underegtintaé
IV. GAZE-ATTENTIVE FIXATION SELECTION influences of contrast-related features; the resultingsatere

Luminance and contrast statistics were computed for all tfeund to be higher (statistically significant) for the fotea
patch sizes mentioned earlier. However, the bandpasssraf@tches. In Section IV-B, we also show that the foveated
were computed only for a single patch size 106° x 1.6° framework perfoms better than the full-resolution anayisi
due to the computational constraints of finding the optim&pze selection.
bandpass kernels. This patch size was selected because $ince these statistics were obtained directly from the fixa-
provided the maximum contrast ratio between human atidns of human observers, these findings can also be used to
random fixations. The value of the feature ratie),.;;o, Select fixations in new scenes in a manner that mimics the
was computed as described in (1) for the four image featuffdsation pattern of human observers. The remainder of this
described in Section Ill and is plotted as a function of sdecasection presents a simple algorithm that uses these wsuall
magnitudeg, in Fig. 3 for a patch size df.6° x 1.6°. The error important image features to select fixations in a new scene.
bars represent a 90% confidence interval obtained from tB&en an image, the algorithm begins by selecting the cearfter
200 bootstrap replications. First, we note that for all dieas, the image as the first fixation point. This selection is cdasis
the mean value ob(e), .+, is significantly higher thari.0, with previous findings that observers tend to first fixate at th
which implies that the image patches around human fixationgddle of the image stimulus [37]. To simulate the foveated
had, on average, higher values for each of these features teacoding of the human visual system, the image is then
the image patches selected at randamall eccentricities. foveated around this central fixation point. The foveatedgm
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is then filtered to create a saliency map for each of the fouisual angle). The degree of overlap between the ellipse and
features discussed earlier. Saliency maps for luminancde d@he bright regions is a subjective measure of the performanc
contrast are computed using a fixed kernel sizé.6f x 1.6° of GAFFE. An objective measurement is presented in the
pixels. Saliency maps for the bandpass kernels are obtairielfowing section.
using the five Gabor kernels (one per saccade bin) obtained
as described in the Appendix. The filtering process for the . . - .
bandpass kernels is space-variant - i.e. the type of kdmaeid B. Quantitative Comparisons of Fixation Sdlections
used at a certain location in the image depends on the destancin section IV-A, we demonstrated qualitatively that fixa-
of that location from the current fixation point. Thereforetions can be selected using a linear combination of lowtleve
image regions that are nearest to the current fixation poit amage features. Quantifying the similarity between reedrd
filtered with the kernel corresponding to the small magretudixations and those selected by an algorithm generally Vol
saccade bins in Fig. 6, and points that are farther are filterelustering human fixations into regions that are then costar
using the corresponding kernel from a large magnitude si@ccavith fixations selected by the algorithm using string-matgh
bin. Since the kernels in Fig. 6 were computed Sosaccade algorithms [20]. Other methods of comparing human fixations
bins, the resulting filtered image hdscircular regions of to predictions are discussed in [40]. In our experimentsesi
filtered outputs. The filtered output can be interpreted Bimpthere were many fixations per image (about 300), we opted
as a likelihood map in which regions with large values ar® extrapolate this human eye fixation data to a pseudo-dense
more likely to draw a fixation than those regions with lowefixation selection map similar to the method used in [40]sE:ir
values. The four feature maps were then linearly combingiven an image, each recorded fixation for that image was
using a weighted average where the weights for each of ttepresented by a 2D Gaussian window whose full-width at
feature maps were selected to be proportional to the maximiaf max was selected to belé of visual angle as in Section
value of the ratio values they generated in the comparisbtA. Then, the fixation selection algorithm was used to sele
against randomly selected patches. Thus the weights fduthe10 fixation points, each of which was again represented by a
minance, contrast, luminance-bandpass, and contradphas 2D Gaussian window. The resulting maps, when normalized
from Fig. 3 were 1.04, 1.12, 1.23, and 1.30 respectively. The sum to unity, can be viewed as two dimensional probability
weights were normalized to sum to unity. The algorithm useensity maps, where peaks correspond to regions with a
a greedy criterion in selecting the maximum value from thisigh probability of drawing an observer’s fixation. We then
weighted selection map as the next fixation point, foveatesmputed a zero-lag correlation between these two maps to
the image around this point, and repeats this process. Thentify the degree of overlap between the fixations selecte
resulting selection map was also weighted using an invertby the algorithm and the recorded fixations. As mentioned
Gaussian mask centered on each selected fixation point. Téwslier, the first fixation for GAFFE was manually selected
masking simulates an inhibition-of-return mechanism [@8jl at the image center to match the oberservers’ task. To avoid
prevents the future fixation selections from landing vensel spurious correlations due to this set up, we ignored the first
to previously selected fixations. At each stage, to alleviafixation from both recorded and predicted fixations before
boundary artifacts of filtering, the selection map was alsmmputing the correlation coefficients.
weighted with a rectangular mask that had a value of onesFigure 5 shows the average correlation values between
in the center and tapered sharply towards zero at the imafe recorded fixations and the fixations generated by the
boundaries. four image features (luminance, RMS contrast, luminance-
bandpass, contrast-bandpass) discussed earlier. Thebarso
represent standard errors. Since the ‘combined’ featuighiese
the contrast-bandpass most heavily, its correlation is/ onl
Figure 4 qualitatively illustrates the performance of thenarginally higher than the contrast-bandpass. Finallyalgse
fixation selection algorithm. For visualization purpos#®se computed the correlation coefficient for a full-resolutimodel
fixations of 29 observers on these images were clustereébat uses the same four image features as above, but without a
using a density-constrained clustering algorithm, whethe foveated framework, and for another popular saliency model
growth of the cluster is constrained by a minimum densitipr fixation selection [21]. We note that, in general, the
requirement. In other words, the cluster is allowed to grofixations selected by the foveated analysis correlatesibett
in size only if the new cluster contains a minimum numbewith the recorded fixations than those generated by the full-
of fixations per unit area. Details of the implementation of sesolution models. The lower bound on the correlation coef-
density-based algorithm, DBSCAN, can be found in [39]. Aicient is obtained by randomly selecting the same number of
density constraint that required at least four fixations itfa fixation locations as the algorithm. We see from the cori@hat
region of a cluster produced reasonable clusters in thete teplots, that all image features perform better than a random
Ten clusters with the maximum density of fixations are showfixator, with the combined feature map producing the best
as ellipses in Fig. 4. The fixation selection algorithm wasorrelation to recorded fixations. The upper bound on the
used to select a sequence of 10 fixations, each of which wamsrelation coefficient is determined by the variabilityfixa-
represented by a 2D Gaussian window, illustrated by théhbrigion locations across observers. This inter-observeabdity
regions in Fig. 4. The full width at half-max of the Gaussiawas measured by separating observers into two groups and
roughly equaled the diameter of the human foveola (a®ut computing the correlation in the fixation maps between the

A. Qualitative Comparison of Fixation Selections
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Fig. 4. Examples of fixation selection using a combination ofgeéeatures. The left column shows the original images withiéira superimposed. The
right column shows fixations selected using a linear comhinadif four image features. The numbers denote the order in whiations are selected. Each
fixation is represented by a 2D Gaussian window. The elligs®te clusters of human fixations on these images.
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with the fixations selected by human observers. Contrast-

c : | bandpass is shown to provide the best correlation amongst
oveated—Combined + .
S oo = the four features studied. The matlab code for GAFFE can
oveated—Contrast-Bandpass .
. P be downloaded fronhttp://1ive. ece. ut exas. edu/
g | Foveated-Luminance-Bandpass 1 resear ch/ gaf f e. In the near future, as a service to the
% Foveated-RMS Contast —— 1 community, we will be providing free access to the entire
% Full Resolution — ] collection of eye movements. The accompanying manuscript,
& [ Foveated—Luminance —— ] DOVES: A Database of Visual Eye Movements, is currently
Ty | under_ review. _ _ o
Tran - While this paper presented the selection of visual fixations
anaom 1 . . .
in the absence of any particular visual task, we have also
o 005 01 o1 02 02 03 o0z used a similar gaze-contingent analysis framework to #ico

" Correlation Coefficient

strategies used by human observers in a visual search task
Fig. 5. Quantitative comparison of selected fixations wittorded fixations. Wh?re observers SearCh.ed for simple geometric targetS@Ch
The bars show the correlation between recorded fixations fations NoOrizontal edges and triangles embedded at very low signal-
selected using image features. to-noise ratios in noise stimuli that had the spectral atyara

teristics of natural images. By analyzing properties of the

noise stimulus at observers’ fixations, we were able to levea
two groups. The upper bound was found to be around 0.75 fgosyncratic, target-dependent features used by obseive

our database, suggesting further room for improvement froff visual search task [41], [42]. The extracted featuresswe

other bottom-up or a combination of bottom-up and top-dowl)s found to be effective in selecting potential locatiarfis

features. _ o o targets that matched human fixations in novel noise stimuli
For our simulations, we used 10 fixations since it reprea3;.

sented the average number of fixations executed by an observer,o performance of GAFFE has been tested only on a
for an image in our experiment. In an another analysigpecific collection of outdoor natural scenes, with featuee-
we gradually increased the number of flxat|ons_ selected. B¥cted at a single scale that was based on a particularngewi
GAFFE (from 1 to 10) and found that the difference iRcenario. A natural extension of this work would involved
correlation coefficients between the various featuressdsed. 5 multi-scale analysis of the relevant features, which can
It is likely that with a large number of fixations, the inhibi- - jude higher order features such as orientation, texame
of-return simply forces future fixations to span the entirgyctyre amongst others [44]. Recently, it has been shbain t
image, thereby resulting in a similar value of the correRati |minance and contrast are statistically independentfeatin
coefficient. To evaluate the influence of fixation durationgsiral images [45]. Thus, it is reasonable to assume teat th
on the correlation analysis, we also computed the correlgsjiency maps contributed by these two features to the dixati
tion coefficient between fixations selected by GAFFE and @yection map are not overly redundant. Further analysis is
pseudo-dense map of recorded fixations where each fixatigiyuired to evaluate the contributions of the other featioe
was replaced by a Gaussian whose amplitude was scalgd saliency map, and the effect of these features on differe
in proportion to the duration of the corresponding fixationyatasets of images [28]. A related issue is one of feature
The correlation coefficients were found to be lower whegsmpination. As seen in Fig. 5, a simple linear combinatibn o
the fixation durations were included. This decrease can §g features is only marginally better (in terms of corieka)
attributed to the fact that GAFFE weights all fixations eual than using the contrast-bandpass as a fixation predictocawe
whereas in reality, some fixations are more salient than tQgyision an image-dependent weighting of the featuresravhe
others. weights are computed dynamically based on the distribution
of the four foveated features in the image. The inhibitién-o
V. CONCLUSION return mechanism in GAFFE is rather unnatural in that it neve
The interplay of top-down (high-level/cognitive) mechaallows future fixations to land near previously fixated regio
nisms such as image understanding and bottom-up (lowtlev&l decay factor can be incorporated into this mechanism to
pre-cognitive) image features (such as edges, contrast atidw GAFFE to return to previous fixation locations after a
motion) influence eye movements in many intricate waysertain number of fixations. Additionally, one could incotp
making the task of accurately modeling gaze a formidabtate well-known observer idiosyncrasies such as the teryden
task. However, analysis of stimuli at observers’ point ofeya to fixate at the image center. Incorporating such a retwn-to
can provide an understanding of strategies used by obsenanter mechanism after a certain number of fixations would
in visual tasks. In this paper, we presented GAFFE: a bottorlow the algorithm to ‘reset’ and explore previously igadr
up, data-driven procedure wherein eye tracking is first usedregions of the image. As mentioned earlier, it might also be
measure the influence of four foveated low-level image feaseful to incorporate fixation dwell times in the analysis of
tures (luminance, contrast, luminance-bandpass, andastnt image features for fixation selection. Another bugaboo irega
bandpass) in drawing the fixation of human observers. Theediction is the design of a quantitative metric for conimpgr
foveated image features thus computed are used to sefmedicted fixations with recorded fixations. We chose the
fixations in novel scenes and are shown to correlate welbrrelation coefficient over other approaches such asgstrin
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editing and Kullback-Leibler divergence owing to its ease D03-168 188245 245345 345498 498-1499
of interpretation. However, it is possible that the quatitie 20 20 20 20 . 20

. . . . 0 0 * 0 0 § 0
comparisons between recoded and predicted fixations can be 0 - 2 2
greatly simplified by assuming that the pseudo-dense map =20 0 20 -z0 D 2z0 20 D 20 20 0 20 20 O 20

of recorded fixations represents a true probability of fowti 20 20 20 20 20

locations for the image, and comparing the log-likelihood Dn Dn Dn D- D-

for the different sets of predicted fixations. This procedur Bl

obviates the need to estimate a dense probability disibitbut

from only 10 predicted fixations. Finally, we note that GAFFE

does not predict the sequence of fixations of observergadst Fig. 6. Design of Bandpass kernels. The top row shows plots,fi, (¢)

it selects regions that will, on average, be selected by hun@;fggﬁm gérfggcade magnitude for a patch sizé.6f x 1.6° pixels.
. T ponds to the saccade bin in which the DFlysimavas

observers. Modeling the sequence of fixations, however, p&formed (the bins are indicated on the title). The x and g erithese plots

much more challenging than predicting their locations [20] correspond to cycles per degree. All plots have been platting the same
colormap. The bottom row shows the corresponding best fitdagors.

APPENDIX

BANDPASS KERNEL DESIGN (shown by dark regions) do not play an important role in

To compute the bandpass kernel that provides maximuirawing fixations because their energy is similar to the ienag
separation between human and random patches, we cashdffled patches. Finally, to locate the statistically gigant
resort to a brute force approach by changing various pspatial frequencies, the FFT ratios were bootstrapped and
rameters of the bandpass kernel (such as full width at halB0 bootstrap estimates df,..;;,(e) were computed. Spatial
max, shape, and orientation). The following is an alteueati frequencies that were statistically different froin0 were
approach that involves designing the kernels in the Fourisglected and modeled using Gabor kernels using numerical
domain. We begin by locating the spatial frequencies wheoptimization routines in Matlab. The resulting fits are shaw
the human patches differ significantly from the random pegchthe bottom row of of Fig. 6 are indeed a coarse approximation,
as follows. Given a patchin image: located at an eccentricity and better models for relevant spatial frequencies can be. us
e from the previous fixation, the ratio of the average discrefehe effect of foveation manifests itself by highlightingeth
Fourier transforms (DFT) of image patches at point of gaziewer frequencies at larger saccade magnitudes. This is ex-
FFT(p,e)|lpoc, to the discrete Fourier transform of patchepected because, for large saccades the patches are foieated

selected randomly"F'T(p, €)| rana WaS computed: greater extent, and therefore the region of relevant frecjes
gets smaller.
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