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ABSTRACT

since blur can be space-variant, may depend orhdadpt
field (hence effect foreground and background dbjec

The increasing number of demanding consumer videdifferently), and may depend on what is being lgdrin the

applications, as exemplified by cell phone and iotbe/-
cost digital cameras, has boosted interest in feyerce
objective image and video quality assessment (QAJhis

paper, we focus on no-reference image and video bl sharpness measurement metric based on local edge

assessment. There already exist a number of ncersfe
blur metrics, but most are based on evaluatingniidéhs of

intensity edges, which may not reflect real imagality in

many circumstances. Instead, we consider naturathesc
statistics and adopt multi-resolution decompositieethods
to extract reliable features for QA. First, a proitiatic

support vector machine (SVM) is applied as a roingége

guality evaluator; then the detail image is usedefme and
form the final blur metric. The algorithm is tested the
LIVE Image Quality Database; the
algorithm has high correlation with human judgmemt
assessing blur distortion of images.

results show thenormal

image.
A number of NR blur metrics have already been
developed. For example, Caviedes and Gurbuz [3jqsed

kurtosis. The method they developed first deteaiges
within blocks, then uses the kurtosis of the bl@RT to
measure the sharpness of the block. The sharpriess o
image is then defined as the average sharpness ablver
blocks. Marzilianoet al [4] proposed a blur measurement
metric based on analyzing of the width or spreaddufes in
an image. Their technique an image is more likelybe
blurred if the detected edges are wider. Chuaingl. [5]
evaluate blur by fitting the image gradient magiétuo a
distribution. The standard deviation of this
distribution is then regarded as a blur measurenientay
be observed that all of these metrics attempt Qlarbased
on evaluation of edges only. However, the widthseddes

Index Terms—no-reference blur metric, gradient histogram may not reflect the true image blur, undermining th

1. INTRODUCTION

accuracy of the assessment. This paper thus aicsvigop
a blur assessment metric that includes more relitgaltures.
In our search for reliable features other than sdge

With the rapid and massive dissemination of digitalare inspired by research on natural scene statidtichas

images, people live in an era full of digitized va$
information. Since many of these images are of dmality,
effective systems for automatic image quality défiation
are needed. Although there are a variety of effecfull-
reference (FR) quality assessment (QA) method$, asiche
Structural SiMilarity (SSIM) index [1] and the Vialu
Information Fidelity (VIF) index [2], there yet reaims no
definitive algorithm or approach to no-referenceRjNQA.
As such, research in the area of blind or NR QAaies
quite vital.

There are many artifacts that may occur in a distor
image, such as blocking, ringing, noise, and Blmike FR
QA, where a reference is available to test agaarst
distortion, NR QA approaches generally seek touwapbne
or a few distortions. Here we are mainly concerwétl NR
blur assessment, which remains an important prokilem
many applications. Generally, humans tend to calechihat
images with more detail are of higher quality. Vadily
acknowledge, of course, that the question is nosisple,

been shown that natural images obey specific Statidaws
that, in principle, can be used to distinguish redtimages
from artificial images [7]. From this perspectivielurred
images may not belong to the category of naturages.
Using this observation, a NR blur metric can beigiex
based on measured image statistics. Previouslykisbe al
has shown that natural scene statistics are ukefilR QA
on JPEG-2000 distorted images [8). this study, specific
natural scene statistics drawn from the gradiestogram
are used as features. A coarse blur metric usimgeth
features for evaluating video quality is developesing a
probabilistic support vector machine (SVM). Givehnet
coarse blur assessment, a multi-resolution anaitysised to
improve blur assessment. The overall algorithmhsas to
effectively accord with human subjectivity.

The rest of the paper is organized as follows: iS8ec
describes our use of natural scenes statisticstioBe8
presents our basic NR blur metric. Section 4 dettie
extended blur metric using multi-resolution anaysie



demonstrate experiment results on our algorithrBention
5 and conclude the paper in Section 6.

2. NATURAL IMAGE STATISTICS

Recent research on natural image statistics haversh
that natural scenes belong to a small set in theespf all
possible image signals [6]. An example of a natscEne
property is the greater prevalence of strong ingrgelients
along the cardinal (horizontal and vertical) or&iuns, in
both indoor and outdoor images. A number of redeasc
have developed statistical models that describeergen
natural images [7] (including images of man-madmss).

According to the research conducted by Field [9]
although images of real-world scenes vary greatlyhieir
absolute color distributions, image gradients galhehave
heavy tailed distributions. Natural image
magnitudes are mostly small or zero, yet take lagees
significantly more often than a Gaussian distributi This
corresponds to the intuition that images often aiontarge
sections of smoothly-varying intensities, interegt by
occasional abrupt changes at edges or occlusivedaoies.
However, blurred images usually do not have shages,
so the gradient magnitude distribution should mofdts
mass at small or zero values. By example, Fig.alvstone
sharp and one blurred image. Figure 2 shows thielditon
of their respective gradients.

Liu et al.[10] and Levin [11] have demonstrated that th
heavy tailed distributions of gradients can be ufsedblur
detection. Liuet al. used the gradient histogram span as
feature in their classification model. Levin debes the
observed histogram using a mixture model.

Fig. 1 Left: blurredimageA.  Right: Sharp image B.
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Fig. 2. Gradient distributions of images A and B in Fig. 1.
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3. PROBABILISTIC SYM FOR BLUR ASSESSMENT

Based on our observation on natural scene statistie
seek to evaluate the distance between the grasiiatistics
of an image and a corresponding statistical motlektural
scenes. This distance can then be used for image QA

A classification method is used to measure theadés.
We classify images into two groups. One is tagged a
“sharp” and the other as “blurred.” Using the probstic
SVM classification model, confidence values repnésbe
distance between the test image and the training Ae
higher confidence value implies a higher certaiofythe
classification result. In this case, this meang tha test
'sample is closer to the assigned class centerthieestatistic
of the test image is closer to that of “sharp” biufred”
images.

We chose to use a support vector machine (SVMuas o
classification model. The main reason for using SkNhat
it works well for classifying a few classes withwfgraining
samples. This is highly suitable in our case ofitgwonly
two classes. Moreover, SVM allows substitution efriels
to achieve better classification results. Althougtre we
only use the default kernel, the possibility of njiag the
kernel leaves the room for performance improvement.

In choosing features, instead of using the features

mentioned in Liwet al. [10] or Levin [11], we use the entire
gradient histogram as the feature, which contairgem
information than just the mean or slope of thedgsam.
a After applying probabilistic SVM classification [12n
an image, a label that indicates its class andndidance
score that indicates the degree of confidenceerdtcision
are obtained. Then the single-scale quality scdrehe
image is defined as:

50+ 50confidence ik is classified as gha
50[{1-confidence) ik is classified asibied

QS-SVMK)= { @)

4. MULTI-RESOLUTION NR QA OF BLUR

As with most other areas of image processing and
analysis, multi-resolution methods have been shdwn
afford improved performance relative to single-feson
methods for FR QA [13]. Next we explore the podiibof
modifying QS-SVM using information from a multi-
resolution decomposition.

Applying a wavelet decomposition on an image isirat
way to reveal local spatio-spectral properties thay reveal
whether the image has been modifiedr example, Fig. 3
shows a sharp image decomposed using a two-level of
wavelet decomposition, while Fig. 4 a decomposearbdl
image. The sharp image is a high-quality image fitbim
LIVE Database that appears sharp on close vissgkition.
The blurred image was modified by a Gaussian logspa
filter. Here, the 2D analysis filter bank desigr®d Farras
[14] is used to analyze the image. From Figs. 3 4ni is



apparent that the sharp image contains signifibarizontal
and vertical energy in the high bands, while thaerred
image does not. As a simple measure of sharpnessum
the horizontal and vertical responses in the highdp which

we term adetail map.The detail map is used to improve the
QA process. Figure 5 shows the detail map of therpsh

image in Fig. 3.
A multi-resolution quality (or sharpness) score tiaen
be calculated as follows:
I N I
Blur Quality Score= (QS-SVM)” [1( DS)" 2

=1

where N is the number of layers in the wavelet
decomposition, and QS-SVM is the score obtained b

analyzing the original image with the probabilis&/M
model, as described in the preceding section. EyrS is
a detail scoreobtained from the detail map of layierThe
detail score (omitting indices indicating the wastelevel,

since it is applied identically) is defined as:
width height

> > gradient(n,n)
DS=-mL _ (3)
widthCheight

wherewidth andheightare the dimensions of the image that
DS is applied to, and gradiemt( ) is the gradient

magnitude value of the image at coordinate ).

Blur Quality Scoreis the final blur evaluation result,

which is the product of the full-resolution scor&-QVM
and the values of DS from each layer. The parametare

. N
normalized exponents, wheper, =1.
i=0
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Fig. 3. Wavelet decomposition result of sharp image.
Top Left: low low band responses;
Top Right: horizontal high band responses;
Bottom L eft: vertical high band responses;
Bottom Right: high high band responses.

100 200 300

Fig. 4. Wavelet decomposition result of blurred image.
Top Left: low low band responses;
Top Right: horizontal high band responses;
Bottom L &ft: vertical high band responses;
Bottom Right: high high band responses.

Fig. 5. Detail m of imagein Fig. 3.

5. EXPERIMENTSAND RESULTS

The LIVE database [16] of images was used in the
following experiment. The database includes DMOS
subjective scores for each image and several tyfes
distortions. The distortions include JPEG2000 caspion
distortion, JPEG compression distortion, white apis
gaussian blur, and fast fading channel noise. kperament
was performed only on the gaussian blur images (174
images).

5.1. Performance of SVM Classification

To train the SVM classification model, we used 240
training samples which were marked as “sharp” durfied.”
The training samples were randomly chosen and soime
them are out-of-focus photos. Due to the unbalamngedity
of the natural training samples (there were morarsh
images than naturally blurred images), we appligdw@ssian
blur to some of some sharp samples to generatdicudi
blurred samples. The final training set included Xharp
samples and 115 blurred samples.



While tagging samples, if an original image’s qyalvas
mediocre, the image was duplicated; one copy madsed

Prediction Model

“blurred” and the other marked as “sharp,” withtbohages DS, (DS,
used for training. This procedure prevents misdiaations DS, [DS,
arising from marking mediocre image as “sharp” or
“blurred.” This duplication was applied to lowernfmence QS-SVMIDS,
when classifying mediocre samples. QS-SVMIDS, [DS,
The algorithm was evaluated against the LIVE DMOS QS-SVMLDS,
scores using the Spearman rank order correlatiefficient Table 3. QA performance using differ ent
(SROCC). The results are shown in Table 1 combinations of layers.
Prediction Model Table 3 shows t.hat,. except for c':ombinat.ion w!th QA-
QS-SVM SVM, all other combmaﬂons with Q$I|dn’t ach|eve h|gher
performance than using only RSThis result is consistent
PSNR (FR) with our other work in FR QA, where we have fougitt
MS-SSIM (FR) mid-band QA scores tend to score higher than lomdhar
. ] high-band scores. Adding more layers did not improv
Table 1. Comparison of the performance of VQA algorithms. performance here. The highest performance occurs by

In Table 1, QS-SVM means probabilistic SVM, PSNRcombining D with P-SVM (,=0.999,r,=0.001), yielding
means peak signal to noise ratio, and MS-SSIM mear@ impressive SROCC score of 0.9105. Combination QS
multi-scale structure similarity index. In order abtain an SVM with DS, (r,=0.996, r,=0.004) also improved the
objective evaluation result, we compared our metlwothe ~ performance relative to DSsuggesting that QS-SVM and

FR methods [15] tested on the same database. the DS scores offer complementary measurementsrallve
QS-SVM delivered lower SROCC scores than the FRhese results confirm our hypothesis that addingemo
indices, although the results are promising. reliable features to the problem of blur assessnuamt
improve performance.
5.2. Performance with M ulti-Resolution Decomposition Table 4 illustrates the final performance of ogogithm

We began by estimating which layers of the wavelecompared with full-reference algorithms.
decomposition achieve the best QA result. We fotivel
correlations between the DS scores and human givitiec _ Prediction Model
for each layer. The performance numbers are shown i
Table 2.

QS-SVM
PSNR

QS-SVM DS,
MS-SSIM (FR)

Prediction Model
QS-SVM

DS Table 4. Summary of QA performance of different algorithms.

DS,

Bz 6. CONCLUSION AND FUTURE WORK

We found that the statistics of the image gradient
histogram and a detail map from the image wavelet
In Table 2, D$ is the detail score computed from the decomposition can be combined to yield good perémue

original image. The experiment shows the SROCCesofr for NR blur QA. The performance was demonstratedgus

DS, to be significantly higher than for the other leyeThe the LIVE database of images. Using measured nasceaie

detail map at this middle scale appears to delivdrigh ~ statistics is useful and there are a few directiwngthy of

correlation with human impression of image quality. further exploration. We plan to refine our reseaiththe
Next we studied combining the QA performance offollowing ways:

different layers, omitting level 3 because of itgop 1. Revise the classification. Currently the QS-SVMidse

performance. Table 3 shows the results of several an SROCC score of 0.6136 when assigning samples int

Table 2. QA performance using different layers.

combinations of algorithms. The parametersof each two classes. Further experiments applying other
combination were determined by regression on thigitrg classification methods may contribute to the albomi
samples. 2. Expand the algorithm to evaluate video with mudipl

distortions. Compression distortions may occur with
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block, blur, and ringing in the same frame, ands¢he [15] Z. Wang, G. Wu, H. R. Sheikh, E. P. Simoncelli-E Yang,
distortions also may be regarded as un-natural esiag and A. C. Bovik, "Quality-aware images/EEE Trans.
Therefore, NR QA indices for more general Image Processyol, 15, no. 5, pp. 1680-1689, June 2006.

compression-related distortions will be an importamd (161 H-R. Sheikh, Z. Wang, L.K. Cormack and A.C. Bovik,
. . LIVE Image Quality Assessment Database,” Release 2
interesting for future study.

o o . . online]: Available at:
Explicit statistical modeling. The NR QA algoriths)( Lttp://lil/e.ece.utexas.edu/research/quality/suhjedttm
developed here have utilized measured natural scene
statistics. A further step in this direction wille bto
deploy quantitative models of natural scene stegist
and how they are modified by the various distogjon
leading to improved classification and overall QA
performance.
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