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ABSTRACT 

 
The increasing number of demanding consumer video 
applications, as exemplified by cell phone and other low-
cost digital cameras, has boosted interest in no-reference 
objective image and video quality assessment (QA). In this 
paper, we focus on no-reference image and video blur 
assessment. There already exist a number of no-reference 
blur metrics, but most are based on evaluating the widths of 
intensity edges, which may not reflect real image quality in 
many circumstances. Instead, we consider natural scenes 
statistics and adopt multi-resolution decomposition methods 
to extract reliable features for QA. First, a probabilistic 
support vector machine (SVM) is applied as a rough image 
quality evaluator; then the detail image is used to refine and 
form the final blur metric. The algorithm is tested on the 
LIVE Image Quality Database; the results show the 
algorithm has high correlation with human judgment in 
assessing blur distortion of images. 
 
Index Terms—no-reference blur metric, gradient histogram 
 

1. INTRODUCTION 
 

With the rapid and massive dissemination of digital 
images, people live in an era full of digitized visual 
information. Since many of these images are of low quality, 
effective systems for automatic image quality differentiation 
are needed. Although there are a variety of effective full-
reference (FR) quality assessment (QA) methods, such as the 
Structural SIMilarity (SSIM) index [1] and the Visual 
Information Fidelity (VIF) index [2], there yet remains no 
definitive algorithm or approach to no-reference (NR) QA. 
As such, research in the area of blind or NR QA remains 
quite vital.  

There are many artifacts that may occur in a distorted 
image, such as blocking, ringing, noise, and blur. Unlike FR 
QA, where a reference is available to test against any 
distortion, NR QA approaches generally seek to capture one 
or a few distortions. Here we are mainly concerned with NR 
blur assessment, which remains an important problem in 
many applications. Generally, humans tend to conclude that 
images with more detail are of higher quality. We readily 
acknowledge, of course, that the question is not so simple, 

since blur can be space-variant, may depend on depth-of-
field (hence effect foreground and background objects 
differently), and may depend on what is being blurred in the 
image. 

A number of NR blur metrics have already been 
developed. For example, Caviedes and Gurbuz [3] proposed 
a sharpness measurement metric based on local edge 
kurtosis. The method they developed first detects edges 
within blocks, then uses the kurtosis of the block DCT to 
measure the sharpness of the block. The sharpness of an 
image is then defined as the average sharpness over all 
blocks. Marziliano et al [4] proposed a blur measurement 
metric based on analyzing of the width or spread of edges in 
an image. Their technique an image is more likely to be 
blurred if the detected edges are wider. Chuang et al. [5] 
evaluate blur by fitting the image gradient magnitude to a 
normal distribution. The standard deviation of this 
distribution is then regarded as a blur measurement. It may 
be observed that all of these metrics attempt blur QA based 
on evaluation of edges only. However, the widths of edges 
may not reflect the true image blur, undermining the 
accuracy of the assessment. This paper thus aims to develop 
a blur assessment metric that includes more reliable features. 

In our search for reliable features other than edges, we 
are inspired by research on natural scene statistics. It has 
been shown that natural images obey specific statistical laws 
that, in principle, can be used to distinguish natural images 
from artificial images [7]. From this perspective, blurred 
images may not belong to the category of natural images. 
Using this observation, a NR blur metric can be designed 
based on measured image statistics. Previously, Sheikh et al 
has shown that natural scene statistics are useful for NR QA 
on JPEG-2000 distorted images [8]. In this study, specific 
natural scene statistics drawn from the gradient histogram 
are used as features. A coarse blur metric using these 
features for evaluating video quality is developed, using a 
probabilistic support vector machine (SVM). Given the 
coarse blur assessment, a multi-resolution analysis is used to 
improve blur assessment. The overall algorithm is shown to 
effectively accord with human subjectivity. 

The rest of the paper is organized as follows: Section 2 
describes our use of natural scenes statistics. Section 3 
presents our basic NR blur metric. Section 4 details the 
extended blur metric using multi-resolution analysis. We 



demonstrate experiment results on our algorithm in Section 
5 and conclude the paper in Section 6.  

2. NATURAL IMAGE STATISTICS  
 

Recent research on natural image statistics have shown 
that natural scenes belong to a small set in the space of all 
possible image signals [6]. An example of a natural scene 
property is the greater prevalence of strong image gradients 
along the cardinal (horizontal and vertical) orientations, in 
both indoor and outdoor images. A number of researchers 
have developed statistical models that describe generic 
natural images [7] (including images of man-made scenes).  

According to the research conducted by Field [9], 
although images of real-world scenes vary greatly in their 
absolute color distributions, image gradients generally have 
heavy tailed distributions. Natural image gradient 
magnitudes are mostly small or zero, yet take large values 
significantly more often than a Gaussian distribution. This 
corresponds to the intuition that images often contain large 
sections of smoothly-varying intensities, interrupted by 
occasional abrupt changes at edges or occlusive boundaries. 
However, blurred images usually do not have sharp edges, 
so the gradient magnitude distribution should more of its 
mass at small or zero values. By example, Fig. 1 shows one 
sharp and one blurred image. Figure 2 shows the distribution 
of their respective gradients. 

Liu et al. [10] and Levin [11] have demonstrated that the 
heavy tailed distributions of gradients can be used for blur 
detection. Liu et al. used the gradient histogram span as a 
feature in their classification model. Levin describes the 
observed histogram using a mixture model.    

 

Fig. 1 Left: blurred image A.      Right: Sharp image B. 

 

Fig. 2. Gradient distributions of images A and B in Fig. 1. 

3. PROBABILISTIC SVM FOR BLUR ASSESSMENT  
 

Based on our observation on natural scene statistics, we 
seek to evaluate the distance between the gradient statistics 
of an image and a corresponding statistical model of natural 
scenes. This distance can then be used for image QA. 

A classification method is used to measure the distance. 
We classify images into two groups. One is tagged as 
“sharp” and the other as “blurred.” Using the probabilistic 
SVM classification model, confidence values represent the 
distance between the test image and the training set. A 
higher confidence value implies a higher certainty of the 
classification result. In this case, this means that the test 
sample is closer to the assigned class center, i.e., the statistic 
of the test image is closer to that of “sharp” or “blurred” 
images. 

We chose to use a support vector machine (SVM) as our 
classification model. The main reason for using SVM is that 
it works well for classifying a few classes with few training 
samples. This is highly suitable in our case of having only 
two classes. Moreover, SVM allows substitution of kernels 
to achieve better classification results. Although here we 
only use the default kernel, the possibility of changing the 
kernel leaves the room for performance improvement. 

In choosing features, instead of using the features 
mentioned in Liu et al. [10] or Levin [11], we use the entire 
gradient histogram as the feature, which contains more 
information than just the mean or slope of the histogram.   

After applying probabilistic SVM classification [12] on 
an image, a label that indicates its class and a confidence 
score that indicates the degree of confidence in the decision 
are obtained. Then the single-scale quality score of the 
image is defined as:  

 
50 50 confidence if  is classified as sharp

QS-SVM( )   
50 (1-confidence) if  is classified as blurred
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4. MULTI-RESOLUTION NR QA OF BLUR 

 
As with most other areas of image processing and 

analysis, multi-resolution methods have been shown to 
afford improved performance relative to single-resolution 
methods for FR QA [13]. Next we explore the possibility of 
modifying QS-SVM using information from a multi-
resolution decomposition.  

Applying a wavelet decomposition on an image is natural 
way to reveal local spatio-spectral properties that may reveal 
whether the image has been modified. For example, Fig. 3 
shows a sharp image decomposed using a two-level of 
wavelet decomposition, while Fig. 4 a decomposed blurred 
image. The sharp image is a high-quality image from the 
LIVE Database that appears sharp on close visual inspection. 
The blurred image was modified by a Gaussian low-pass 
filter. Here, the 2D analysis filter bank designed by Farras 
[14] is used to analyze the image. From Figs. 3 and 4, it is 



apparent that the sharp image contains significant horizontal 
and vertical energy in the high bands, while the blurred 
image does not.  As a simple measure of sharpness, we sum 
the horizontal and vertical responses in the high band, which 
we term a detail map. The detail map is used to improve the 
QA process. Figure 5 shows the detail map of the sharp 
image in Fig. 3.  

A multi-resolution quality (or sharpness) score can then 
be calculated as follows: 
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where N is the number of layers in the wavelet 
decomposition, and QS-SVM is the score obtained by 
analyzing the original image with the probabilistic SVM 
model, as described in the preceding section. Further, DSi is 
a detail score obtained from the detail map of layer i. The 
detail score (omitting indices indicating the wavelet level, 
since it is applied identically) is defined as: 
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where width and height are the dimensions of the image that 
DS is applied to, and gradient(m, n) is the gradient 
magnitude value of the image at coordinate (m, n). 

Blur Quality Score is the final blur evaluation result, 
which is the product of the full-resolution score QS-SVM 
and the values of DS from each layer. The parameters r i are 

normalized exponents, where 
0

1
N

i
i

r
=
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Fig. 3. Wavelet decomposition result of sharp image.  

Top Left: low low band responses;  
Top Right: horizontal high band responses;  
Bottom Left: vertical high band responses; 
 Bottom Right: high high band responses. 

 
Fig. 4. Wavelet decomposition result of blurred image.  

Top Left: low low band responses;  
Top Right: horizontal high band responses;  
Bottom Left: vertical high band responses; 
 Bottom Right: high high band responses. 

 

  
Fig. 5. Detail map of image in Fig. 3. 

 
5. EXPERIMENTS AND RESULTS 

The LIVE database [16] of images was used in the 
following experiment. The database includes DMOS 
subjective scores for each image and several types of 
distortions. The distortions include JPEG2000 compression 
distortion, JPEG compression distortion, white noise, 
gaussian blur, and fast fading channel noise. The experiment 
was performed only on the gaussian blur images (174 
images). 
 
 5.1. Performance of SVM Classification 
 

To train the SVM classification model, we used 240 
training samples which were marked as “sharp” or “blurred.” 
The training samples were randomly chosen and some of 
them are out-of-focus photos. Due to the unbalanced quality 
of the natural training samples (there were more sharp 
images than naturally blurred images), we applied a gaussian 
blur to some of some sharp samples to generate additional 
blurred samples. The final training set included 125 sharp 
samples and 115 blurred samples.  



While tagging samples, if an original image’s quality was 
mediocre, the image was duplicated; one copy marked as 
“blurred” and the other marked as “sharp,” with both images 
used for training. This procedure prevents misclassifications 
arising from marking mediocre image as “sharp” or 
“blurred.” This duplication was applied to lower confidence 
when classifying mediocre samples. 

The algorithm was evaluated against the LIVE DMOS 
scores using the Spearman rank order correlation coefficient 
(SROCC). The results are shown in Table 1 
 

Prediction Model SROCC 

QS-SVM 0.6136 
PSNR (FR) 0.7729 

MS-SSIM (FR) 0.9425 

Table 1. Comparison of the performance of VQA algorithms. 

In Table 1, QS-SVM means probabilistic SVM, PSNR 
means peak signal to noise ratio, and MS-SSIM means 
multi-scale structure similarity index. In order to obtain an 
objective evaluation result, we compared our method to the 
FR methods [15] tested on the same database. 

QS-SVM delivered lower SROCC scores than the FR 
indices, although the results are promising. 
 
5.2. Performance with Multi-Resolution Decomposition 

We began by estimating which layers of the wavelet 
decomposition achieve the best QA result. We found the 
correlations between the DS scores and human subjectivity 
for each layer. The performance numbers are shown in 
Table 2.   
 

Prediction Model SROCC 

QS-SVM 0.6136 
DS0 0.6583 
DS1 0.8884 
DS2 0.7733 
DS3 0.5587 

Table 2. QA performance using different layers. 

In Table 2, DS0 is the detail score computed from the 
original image. The experiment shows the SROCC score of 
DS1 to be significantly higher than for the other layers. The 
detail map at this middle scale appears to deliver a high 
correlation with human impression of image quality. 

Next we studied combining the QA performance of 
different layers, omitting level 3 because of its poor 
performance. Table 3 shows the results of several 
combinations of algorithms. The parameters r i of each 
combination were determined by regression on the training 
samples. 

 

Prediction Model SROCC 

DS0 ⋅ DS1 0.8884 

DS1 ⋅ DS2 0.8884 

QS-SVM ⋅ DS1 0.9105 

QS-SVM ⋅ DS1 ⋅ DS2 0.9105 

QS-SVM ⋅ DS2 0.8428 

Table 3. QA performance using different 
combinations of layers. 

 
Table 3 shows that, except for combination with QA-

SVM, all other combinations with DS1 didn’t achieve higher 
performance than using only DS1. This result is consistent 
with our other work in FR QA, where we have found that 
mid-band QA scores tend to score higher than low-band or 
high-band scores. Adding more layers did not improve 
performance here. The highest performance occurs by 
combining DS1 with P-SVM (r0=0.999, r1=0.001), yielding 
an impressive SROCC score of 0.9105. Combination QS-
SVM with DS2 (r0=0.996, r2=0.004) also improved the 
performance relative to DS2, suggesting that QS-SVM and 
the DS scores offer complementary measurements. Overall, 
these results confirm our hypothesis that adding more 
reliable features to the problem of blur assessment can 
improve performance.   

Table 4 illustrates the final performance of our algorithm 
compared with full-reference algorithms. 
 

Prediction Model SROCC 

QS-SVM 0.6136 
PSNR 0.7729 

QS-SVM ⋅ DS1 0.9105 
MS-SSIM (FR) 0.9425 

Table 4. Summary of QA performance of different algorithms. 

 
6. CONCLUSION AND FUTURE WORK 

 
We found that the statistics of the image gradient 

histogram and a detail map from the image wavelet 
decomposition can be combined to yield good performance 
for NR blur QA. The performance was demonstrated using 
the LIVE database of images. Using measured natural scene 
statistics is useful and there are a few directions worthy of 
further exploration. We plan to refine our research in the 
following ways:  
1. Revise the classification. Currently the QS-SVM yields 

an SROCC score of 0.6136 when assigning samples into 
two classes. Further experiments applying other 
classification methods may contribute to the algorithm.   

2. Expand the algorithm to evaluate video with multiple 
distortions. Compression distortions may occur with 



block, blur, and ringing in the same frame, and these 
distortions also may be regarded as un-natural images. 
Therefore, NR QA indices for more general 
compression-related distortions will be an important and 
interesting for future study. 

3. Explicit statistical modeling. The NR QA algorithm(s) 
developed here have utilized measured natural scene 
statistics. A further step in this direction will be to 
deploy quantitative models of natural scene statistics, 
and how they are modified by the various distortions, 
leading to improved classification and overall QA 
performance. 
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