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ABSTRACT

Although image quality assessment (IQA) has observed
much research and advancement in the past, not much
progress has been made towards the development of quality
assessment metrics for range images. The current metrics
being used to assess the quality of range images are remi-
niscent to the old IQA metrics such as mean squared error
that have since been replaced with metrics which better cor-
relate with human perception. This paper presents two new
algorithms for range image quality assessment (RIQA). The
first, R-SSIM, is based off the Multi-Scale Structural Simi-
larity Index (MS-SSIM), while the other is an extension of
the Complex Wavelet SSIM (CW-SSIM) metric for use in
RIQA. The utility of these metrics is demonstrated through
a re-evaluation of Scharstein and Szeliski’s online evalua-
tion of dense two-frame stereo correspondence algorithms.

1. INTRODUCTION

Image quality assessment (IQA) has seen much progress in
recent years, but quality assessment for range images has
been mostly ignored. Standard IQA algorithms cannot be
directly applied to range images due to their fundamental
differences. Also referred to as depth images, range images
depict a scene, not in terms of luminance or color, but in-
stead each pixel represents the distance between that point
in the scene and the camera. Most range images are gen-
erated using either, laser scanning, active triangulation or
passive stereo.

Laser scanning methods scan a scene with a range find-
ing laser to determine the depth at every pixel in the scene.
On the other hand, active triangulation systems project a
beam or a sheet of light onto a scene. This light reflecs off
the scene and is captured by a sensor, usually a CCD camera
set at an offset. Since the position and angles of the source
and sensor are known, the distance between the source and
the point of reflection can be triangulated. Finally, passive
stereo uses two images of the same scene which are taken
by two cameras set at an offset from each other. This sys-
tem calculates the range distances using the same geometric
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principles as active triangulation, except it triangulates the
range from matching pixels in the two images rather than
between the known source and a pixel. All of these methods
have limitations which cause them to produce regions in the
image which contain unknown range data. Laser range find-
ers and active triangulation methods can both suffer from
specular reflections where the light from the source does not
reflect back to the sensor and hence result in an unknown
depth measurement. Active triangulation and passive stereo
tend to encounter occlusions, which also generate unknown
regions [1].

It is useful to be able to quantify the quality of these
range images in order to benchmark range-finding devices
and stereo algorithms. In previous work the RMS (root
mean squared) error [2] or percentage of bad pixels [2][3][4]
has been used to estimate the quality of range images in or-
der to evaluate the performance of stereo algorithms. These
metrics are similar to the standard quality metrics used in
the past for normal luminance images, such as mean squared
error (MSE), and they need to be replaced by better met-
rics. MSE for example has been replaced by metrics such
as SSIM [5], which match better with human subjectivity.
Other successful but more complex metrics, such as the Vi-
sual Information Fidelity (VIF) Index [6] have also been de-
veloped, using models of the human visual system (HVS)
and natural scene statistics (NSS).

This paper proposes a new measure, termed R-SSIM,
which uses of a modified version of the Multi-Scale SSIM
[7] Index, but specially designed for range images. The pa-
per also introduces an extension of the Complex Wavelet
SSIM (CW-SSIM) [8] metric for use in RIQA. Range im-
ages, bear many similarities and differences with luminance
images. When applying the SSIM algorithm to range im-
ages, the three similarity components of SSIM, that is, lu-
minance, contrast and structure, find their counterparts in
the range domain as depth, surface roughness and 3D struc-
ture. R-SSIM also takes special consideration to regions in
the images which contain missing data.

Computational stereo is becoming more prevalent and
commonly utilized in applications such as robot navigation
and face recognition. In [2] Schartein and Szeliski created



a ranking of many recent stereo algorithms. This work has
been continued and improved and is available on their web-
site: http://vision.middlebury.edu/stereo/ [9]. To demon-
strate the utility of R-SSIM and CW-SSIM, the set of stereo
algorithms covered in [2] and their website were reevaluated
and given a new set of rankings using the proposed metrics.
We propose these metrics as an alternative or supplementary
approach to assessing range image quality.

2. THE SSIM ALGORITHM

The Structural Similarity Index was first proposed in [5].
Since its initial publication, the algorithm has gained popu-
larity and acceptance and several variations of the algorithm
have been developed. The algorithm’s greatest appeal is that
it matches human subjectivity. In particular, both the SSIM
Index and the HVS are highly sensitive to degradations in
the spatial structure of image luminances.

The basic SSIM algorithm requires that the two im-
ages being compared be properly aligned and scaled so
they can be compared point by point. The computations
are performed in a sliding NxN (typically 11x11) gaussian-
weighted window. Three similarity functions are computed
on the windowed image data: luminance similarity, contrast
similarity, and structural similarity, which for two images
X and Y are calculated as follows:
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where w(p, q) is a Gaussian weighing function such that
Z;;_P ZQQ:_Q w(p,q) = 1, and Cy, C and C5 are small
constants that provide stability when the denominator ap-
proaches zero. Typically

Cy = (K 1L)?, Cy = (KoL) and C3 = Co /2 (7)

where L is the dynamic range of the image and K; < 1
and Ky < 1 are small scalar constants. The three similarity
functions are then combined into the general form of the
SSIM index:

SSIM(z, y) = [l(z,y)] - [e(z,y)] - [s(2,9)]  (8)

3. MS-SSIM

The Multi-Scale SSIM or MS-SSIM Index [7] is one of the
most popular variations on the SSIM Index. It utilizes the
same basic algorithm except that it operates over several
scales. The reference and distorted images are iteratively
driven through a low-pass filter and down sampled by fac-
tor of two. The resulting image pairs are processed with the
SSIM algorithm and multiplied together.
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Here M is the finest scale obtained after M — 1 scaling
iterations. [;(z,y), ¢j(z,y) and s;(x,y) are the luminance,
contrast and structure components at their different scales.
In [7], o;, B; and ~y; are set according to scale so they match
the contrast sensitivity function of the HVS. For the pur-
poses of this paper and the R-SSIM metric they will be set
aj = f; = and Z]A/il «v; = 1. The MS-SSIM algorithm
compares details across resolutions, providing overall im-
proved image quality assessment, as shown in the massive
statistical study detailed in [10].

4. A NEW INDEX FOR RANGE IMAGES

When translating SSIM from intensity images into the range
image domain, the three similarity subcomponents find their
analog in the range domain. The luminance component be-
comes a function of mean depth which is a meaningful el-
ement in describing a range map. The contrast component
can be interpreted as surface roughness. Finaly, the struc-
ture component captures 3-D structure such as discontinu-
ities, depth singularities, detail, 3D shape, and so on.

The one aspect which ordinary SSIM does not handle
properly are the unknown regions or missing data usually
found in range maps. These unknown regions must be han-
dled appropriately in order to obtain an accurate score from
the quality metric. The R-SSIM algorithm is a variation of
the MS-SSIM algorithm with the ability to handle these un-
known regions.

R-SSIM handles unknown regions differently depend-
ing on if they are on the reference image or the distorted
image. Pixels in the unknown regions of the reference im-
age are ignored in all R-SSIM calculations. Pixels in the
unknown region of the distorted image are ignored when



they fall inside the sliding window used to calculate the
SSIM (x,y) value from its neighboring pixels, but the
SSIM (x,y) value of the unknown pixels themselves are
set to zero. Figure 1(a) depicts an 11x11 patch in the refer-
ence image where there are some unknown pixels (shown in
black). Figure 1(b) shows the same patch in the computed
range image which also contains unknown pixels. Figure
1(c) shows the Gaussian weighing function and Figure 1(d)
shows it masked by the unknown regions and renormalized.
Finally Figure 1(e) shows a map of the SSIM values of that
patch, where the pixel in the middle was the one calculated
from Figures 1(a), 1(b) and 1(d). In Figure 1(e), the same
unknown region from Figure 1(b) is indicated in black with
a SSIM score of zero, while the unknown region in Figure
1(a) will be ignored in the final R-SSIM score.

Fig. 1. Explanation of R-SSIM Index. See text for explana-
tion.

5. CW-SSIM A ROBUST ALTERNATIVE FOR
R-SSIM

The complex wavelet SSIM or CW-SSIM [8] is a powerful
variation of the SSIM algorithm. It extends the SSIM algo-
rithm into the ’complex wavelet’ transform domain. The
CW-SSIM algorithm uses two sets of coefficients ¢, =
{¢zi | i =1,...,N}and ¢y = {¢y; | i = 1,...,N}
extracted at the same spatial location in the same wavelet
subbands of the two images being compared. These coef-
ficients are zero mean, due to the bandpass nature of the
wavelet filters, which means that the luminance component
of the SSIM algorithm is 1 leaving the SSIM algorithm as:
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Converting that formula into the complex wavelet trans-
form domain gives the CW-SSIM formula:
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where K is a small constant. To better understand the
CW-SSIM index, it can be rewritten as the product of two
components:
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The first component is completely determined by the
magnitude of the coefficients, while the second components
is solely determined by the consistency of phase changes
between c,, ; and ¢, ; . Note that the index is not affected by
a consistent phase shift.

The structural information of local image features is
mainly contained in the relative phase patterns of the
wavelet coefficients, therefore a consistent phase shift does
not affect the structure of local features. This means the
metric becomes more robust to translation, rotation and
scaling as long as these distortions are small relative to the
size of the wavelet filters. Images do not have to be perfectly
registered for this metric to provide a good assessment of the
image quality. This is useful in the cases where the ground
truth and the range images under evaluation were obtained
using different methods, i.e. a ground truth obtained via
active triangulation is used to evaluate stereo algorithms. In
such a case there may be slight misregistrations between the
ground truth range image and the range image being evalu-
ated.

Unfortunately CW-SSIM cannot ignore unknown re-
gions common in range images like R-SSIM can. The
wavelet coefficients used by CW-SSIM describe the whole
image and cannot be calculated while ignoring unknown re-
gions in the image. Instead of ignoring them, the proposed
solution is to fill them in via interpolation, but in order to
better match the images, the interpolation must also be per-
formed on the opposing image in the same region as seen in
Figure 2. The interpolation step, will inherently affect the
accuracy of the quality assessment, and therefore a study
was performed to determine the magnitude of the error in-
troduced by the interpolation step. The study utilized sev-
eral image pairs with no unknown regions and calculated
the similarity using CW-SSIM. Unknown regions were then
introduced, interpolated and followed by a second applica-
tion of the CW-SSIM algorithm. The difference between
the CW-SSIM scores showed that the greater the percent-
age of the image that is covered by unknown regions, the
greater the difference between the scores. In the same man-
ner, the larger the size of the unknown regions, the more



difficult it is for the interpolation to properly estimate for
the missing pixel values and hence a greater difference be-
tween the scores. Overall though, the effect is negligible as
long as the unknown regions filled in are relatively small.
In the study performed, even when replacing ten percent of
the image with unknown regions, the difference between the
CW-SSIM score did not read 0.02 [11].
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Fig. 2. Images from Middlebury stereo data set. See text for
explanation.

6. EVALUATING STEREO ALGORITHMS USING
R-SSIM AND CW-SSIM

Computational stereo is one of the most actively researched
fields in computer vision, and new stereo algorithms are be-
ing continuously developed. A comparative evaluation is
useful in gauging the performance of these algorithms as
well as monitoring the progress of the field. Scharstein and
Szeliski [2] published a paper performing a taxonomy and
evaluation of stereo algorithms. In their evaluation, they
used two different quality metrics based on a known ground
truth. The RMS (root mean squared) error computed be-
tween the disparity map d¢ and the ground truth map dr:

1
R= (5 Y lde(a,y) —dr(a,y)l)/?  (13)
(z,y)

where NV is the total number of pixels, and the percentage
of bad matching pixels:

B= 23 (dolw.y) —dr(e.y) >60)  (14)
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where &4 is a disparity error tolerance, which is set to 1 in
this paper.

The authors continue to evaluate new algorithms on
their website: http://vision.middlebury.edu/stereo/ which
now contains 39 algorithms. In their online evaluation they
run each stereo algorithm on four different image pairs and
compare the results against a ground truth. They only use
percentage of bad pixels as a quality measure. The percent-
age of bad pixels is evaluated for each of the four images in
three different regions, as seen in Figure 3. The first region
covers all regions known in the ground truth, the second re-
gion covers all regions which are not occluded and the third
region covers all the areas which are near depth disconti-
nuities and near occlusions. The results of the evaluation
ranked the algorithms according to their performance. The
average ranking was taken from the mean rank from the dif-
ferent regions and images.

(a) Ground Truth

(d) Regions Near Depth Disconti-
nuities

(c) All Known Regions

Fig. 3. Images from Middlebury stereo data set. See text for
explanation.

In order to demonstrate the utility of the R-SSIM al-
gorithm, the same stereo algorithm results were evaluated
using the R-SSIM Index instead of the percentage of bad
pixels. The results are shown in Table 1. Correlating the
results, displayed in Figure 4 it can be observed that the
two metrics correlate well. This demonstrates that the R-
SSIM Index is sensitive to the distortions that the Middle-
bury rankings assess. However, the R-SSIM Index measures
more than loss of depth values, since it also is sensitive to
errors in depth, roughness, and 3-D surface structure, which
can only be measured from local image patches, as opposed
to single pixels.

In the same manner CW-SSIM was also used to rank



all the stereo algorithms in the Middlebury evaluation. The
only difference is that it was only run for one area: all
known regions. CW-SSIM was not run on the other two
areas because they would introduce too many unknown re-
gions for the interpolation to handle appropriately. The re-
sults are shown in Table 1. Figure 5 shows a scatter plots
comparing the CW-SSIM and percentage of bad pixels and a
correlation coefficient between the metrics. The high value
of correlation coefficient indicates that, like the R-SSIM
metric, the CW-SSIM metric is also sensitive to the distor-
tions that the Middlebury ranking assesses.

Percentage Bad Pixels vs. R-55IM Score average of all areas
Carrelation Coefficient: -0.94841
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Fig. 4. Correlations between R-SSIM Index values and per-
centage of bad pixels on the Middlebury dataset.
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Fig. 5. Correlations between CW-SSIM Index values and
percentage of bad pixels on the Middlebury dataset.

Figure 6 shows that the R-SSIM, CW-SSIM and per-
centage of bad pixels can give very different rankings to
the same images. In the case of these particular stereo algo-
rithms, the SSIM based metrics provide a completely differ-

ent ranking than the Middlebury rankings. Visual inspection
of the two images suggests that in this instance, the SSIM
based metrics deliver a more meaningful assessment of the
quality of the computed range maps.

(a) CostRelax Algorithm
Middlebury rank/score: 18/10.2
R-SSIM rank/score: 23/0.893
CW-SSIM rank/score: 23/0.640

(b) RegionTreeDP Algorithm
Middlebury rank/score: 25/11.9
R-SSIM rank/score: 14/0.893
CW-SSIM rank/score: 17/0.664

(c) MultiCamGC Algorithm
Middlebury rank/score: 18/1.99
R-SSIM rank/score: 1/0.945
CW-SSIM rank/score: 2/0.863

(e) SymBP+occ Algorithm
Middlebury rank/score: 6/10.7
R-SSIM rank/score: 11/0.966
CW-SSIM rank/score: 11/0.701

(d) AdaptDispCalib Algorithm
Middlebury rank/score: 4/1.42
R-SSIM rank/score: 23/0.875
CW-SSIM rank/score: 24/0.649

(f) InteriorPtLP Algorithm
Middlebury rank/score: 9/11.9
R-SSIM rank/score: 4/0.974
CW-SSIM rank/score: 5/0.741

Fig. 6. Comparison of the results of six computational
stereo algorithms and their Middlebury, R-SSIM and CW-

SSIM rankings.

7. CONCLUSION

We have proposed R-SSIM as a new and needed quality
metric for range images. We have also presented CW-SSIM
as another alternative for quality assesment of range images,
in particular when image robustness against slight rotation
and translation is required. We have demonstrated their util-
ity by evaluating the 39 stereo algorithms in the Middlebury



Stereo Vision Page. Through their evaluation and compar-
ison of stereo algorithms Schartein and Szeliski [2] have
continue to provide a valuable resource to the field of com-
puter vision. We believe that the R-SSIM and CW-SSIM
algorithms are an effective method for range image fidelity
assessment which complements their evaluations in a bene-
ficial way.
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Table 1. Average Middlebury, R-SSIM and CW-SSIM
rankings on Middlebury stereo image dataset

Algorithm Middlebury  R-SSIM  CW-SSIM
AdaptDispCalib 11.2 19.9 20.8
AdaptOvrSegBP 9.5 9.4 12.8
AdaptWeight 16.8 14.5 15.8
AdaptingBP 2.8 6.7 33
C-SemiGlob 11.8 7.9 8.0
CostRelax 26.9 27.8 275
DP 329 28.7 31.8
DistinctSM 13.5 11.3 13.0
DoubleBP 4.8 9.0 15.5
DoubleBP2 2.8 7.8 12.0
EnhancedBP 15.7 14.6 19.0
GC+occ 22.7 20.8 21.8
GC 29.3 29.2 25.5
GenModel 25.8 28.3 23.0
ImproveSubPix 16.9 12.2 17.3
Infection 374 354 34.8
InteriorPtLP 16.7 9.6 5.8
Layered 23.1 22.5 23.0
MultiCamGC 234 17.4 15.8
OverSegmBP 13.7 11.5 17.0
PhaseBased 34.2 35.4 29.5
PhaseDiff 37 37.0 3255
PlaneFitBP 10.4 11.1 12.0
RealTimeGPU 26.1 28.5 27.3
RealtimeBP 21.5 23.5 22.5
RegionTreeDP 14.8 15.3 18.8
ReliabilityDP 279 30.1 29.8
SO+borders 12.2 15.0 11.8
SO 36.3 35.8 36.8
SSD+MF 34.6 34.8 353
STICA 35.8 333 35.0
SegTreeDP 16.7 17.5 16.8
Segm+visib 11.5 15.8 4.5
SegmentSupport 14.4 15.8 15.8
SemiGlob 18.2 12.3 15.3
SubPixDoubleBP 5.5 32 5.3
SymBP+occ 10.6 17.0 10.0
TensorVoting 25.9 23.1 26.8
TreeDP 28.6 31.3 31.8
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