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ABSTRACT

Most present day no-reference/blind image quality assessment (NR
IQA) algorithms are distortion specific - i.e., they assume that
the distortion affecting the image is known. Here we propose a
novel two stage framework for distortion-independent blind im-
age quality assessment based on natural scene statistics (NSS).
The proposed framework is modular in that it can be extended
beyond the distortion-pool considered here, and each module pro-
posed can be replaced by better-performing ones in the future. We
describe a 4-distortion demonstration of the proposed framework
and show that it performs competitively with the full-reference
peak-signal-to-noise-ratio on the LIVE IQA database. A software
release of the proposed index has been made available online:
http://live.ece.utexas.edu/research/quality/BIQI4D release.zip.

Index Terms— No reference image quality assessment, blind
quality assessment, natural scene statistics

1. INTRODUCTION

Objective full-reference image quality assessment (FR IQA) refers
to quality assessment of images by an algorithm where, apart from
the distorted image, the pristine reference image is made available to
the algorithm [1]. The field of FR IQA has seen tremendous activity
in the recent past, and some good FR IQA algorithms have been pro-
posed [2]. The ‘good-ness’ of any algorithm is gauged by measur-
ing the correlation of algorithmic scores with subjective (differential)
mean opinion scores (DMOS/MOS) on a large dataset spanning dif-
ferent distortion. Many such datasets have been proposed and a host
of FR IQA algorithms have been evaluated for their performance on
these datasets [2, 3].

Objective no-reference/blind IQA (NR IQA) refers to quality as-
sessment of images by an algorithm where only the distorted image
- i.e., the image whose quality is to be assessed is made available to
the algorithm. No information about the reference image is in any
way made available during the testing phase of the algorithm - by
watermarking or by embedding some information in the transmit-
ted bit-stream for example (this is referred to as reduced reference
IQA). Even though the field of NR IQA has not matured as much as
that of FR IQA, the recent past has seen some activity in this area
[3, 4, 5, 6, 7, 8, 9].

Most present-day NR IQA algorithms assume that the distortion
affecting the image is known. For example, there exist algorithms
that predict the quality of images compressed using JPEG compres-
sion [4] or those that gauge quality of blurred images [9]. NR IQA
algorithms that predict quality without knowledge of the distortion
affecting the image are scarce [6, 7].

Here, we present a framework that can be employed for NR IQA
- the blind image quality index (BIQI). This framework for BIQI;

which is based on natural scene statistics (NSS) [10] is modular in
the sense that distortions beyond those considered here may be in-
corporated into the algorithm at a later date. The framework is based
on a novel two-stage process, where the type of distortion affecting
the image is explicitly assessed in stage 1 and quality assessment is
undertaken in stage 2. Distortion identification, based on distorted
image statistics (DIS) [11] is undertaken in order to gauge the pri-
mary distortion affecting the image (from a pool of possible distor-
tions). Distortion-specific quality assessment (DSQA) - stage two -
is then carried out to predict the quality of the image.

The framework proposed here is closest in concept to the ap-
proaches in [6, 7] for video quality assessment (VQA); where a
combination of techniques are used to measure distortion indicators
such as blocking, blur, noise etc., which are then combined using a
Minkowski sum. Here, we do not explicitly seek to characterize the
structure of blockiness and other distortions using local filters, but
instead utilize concepts from NSS to produce an easily extensible
approach to other distortions. The technique utilized for DIS and
DSQA is unique and is competitive with the popular full reference
measure - peak signal to noise ratio (PSNR).

In this paper, we describe the framework for BIQIs and in or-
der to demonstrate the effectiveness of the technique, describe a 4-
distortion version of the algorithm - BIQI-4D, which is thoroughly
evaluated for its performance on the LIVE IQA database [2], where
its performance is compared with that of PSNR. Future work will in-
volve an extension of the proposed framework to include other dis-
tortions (apart from those considered here), for multiply-distorted
images (JPEG2000 compression, followed by packet loss for exam-
ple), as well as for video quality assessment (VQA).

2. A FRAMEWORK FOR BLIND IMAGE QUALITY
INDICES

The framework for blind image quality indices (BIQIs) proceeds as
follows. First the distorted image is transformed into the wavelet do-
main using Daubechies 9/7 wavelet basis [12] over three orientations
and three scales. The wavelet transform is used since it coarsely
mimics the scale-space-orientation decomposition hypothesized to
occur in the human visual system (HVS) in area V1 of the primary
visual cortex [13].

Research in the field of natural scene statistics (NSS) has dis-
covered that coefficients of each subband from such a transform
are distributed in a Laplacian fashion (heavy-tails, high concen-
tration around origin) [10]. In [11], we demonstrated that each
distortion affects these subband statistics in a characteristic way,
and this characteristic can be parametrized. Such a parametriza-
tion of subband statistics is obtained by fitting these statistics
using a generalized gaussian distribution (GGD). The GGD is:
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The shape parameterγ controls the ‘shape’ of the distribution.
For example,γ = 2 yields a Gaussian distribution andγ = 1 yields
a Laplacian distribution. As in [11], the parameters of the GGD (µ,
σ2 andγ) are estimated using the method proposed in [14]. Since
wavelet basis are band-pass in nature, the responses are zero-mean
and hence for each subband we estimate a 2 parameters (σ2 andγ),
which are stacked across subbands to form an 18 dimensional feature
vector (3 scales× 3 orientations× 2 parameters). This feature vec-
tor is sufficient to identify the primary distortion affecting the image
with high accuracy [11]. In our implementation, such identification
is performed using a support vector machine (SVM) [15]; however
the framework is not limited by the form of the classifier used.

Our goal here is not distortion identification, but NR IQA. Fur-
ther, realize that distortions affecting the image may not be inde-
pendent of each other - for example, in a JPEG compressed image,
apart from blocking, blur may exist as well. Hence, instead of per-
forming an absolute classification, we perform a probabilistic one,
where the classifier returns probability estimates of the kind of dis-
tortion present in the image being analyzed. In the demonstration to
follow, this set of distortions includes JPEG and JPEG2000 (JP2K)
compression, Gaussian blur (GB) and White Noise (WN).

Once a probability distribution over the distortion set is obtained
- let us call thispi, {i = 1, 2, 3, 4} - the same 18-dimensional feature
vector obtained from the subbands is utilized in conjunction with
support vector regression (SVR) [15] in order to map the statistics
onto a quality score. Such a mapping is distortion specific - i.e., there
exist 4 different SVRs (trained on the 4 distortions that we consider
here) which map the feature onto a quality score. The statistics of
each distorted image (immaterial of the primary distortion that we
identify) is subjected such a mapping onto a quality score. Let us
denote these quality scores asqi, {i = 1, 2, 3, 4}. The final quality of
the image is then computed as a probability-weighted sum:BIQI =
∑4

i=1 pi · qi.
Such a definition allows for an easy extension to a greater num-

ber of distortions, beyond those considered here. Further, for cases
such as JPEG compression, where the distorted image exhibits pri-
marily blocking along withsome blur, such alinear summation suf-
fices. For multiply distorted images, however, a simple linear sum-
mation may not suffice. Indeed, as we shall see later, for the multiple
distortion of JPEG2000 compression followed by packet loss, such a
linear model performs poorly. Future work will involve an in-depth
analysis of how such distortions interact with each other and their
overall effect on perceived quality. Also note that since the final
score is defined as a linear sum, the performances of the QA mod-
ules are not independent of each other. As we shall soon see, the
use of a better QA algorithm will lead to an overall improvement in
performance of BIQI.

Having described the overall framework of BIQI, we now
demonstrate a 4-distortion version of BIQI, which we label: BIQI-
4D.

3. BLIND IMAGE QUALITY INDEX: A DEMONSTRATION

In this demonstrations we consider a pool of four distortions - JPEG
compression, JPEG2000 (JP2K) compression, white noise (WN) and
Gaussian blur (GB). These distortions were considered here for mul-
tiple reasons including their current practical need. Notice that each

distortion is primary and is essentially independent of the other dis-
tortions. Even though such independence is not of significance for
the distortion classification stage; as we mentioned above, the lin-
earity assumption will hold only when these classes do not overlap
to significant degree. Further, secondary distortions (i.e., multiply
distorted image) will not necessarily adhere to the linear summation.
Thus, even though the LIVE IQA dataset that we use as a test-bed
consists of another category of distortion - fast fading (FF), which
is JPEG2000 compression followed by a lossy channel - we do not
consider FF in the primary pool of distortions. However, in order
to demonstrate that the linear model is ineffective for secondary dis-
tortions such as FF, we report the results of a 5-distortion version
of BIQI (BIQI-5D), even though our primary contribution here is
BIQI-4D.

As we mentioned, the first stage of probabilistic distortion clas-
sification is achieved using a support vector machine (SVM) [15].
SVMs are popular as classifiers since they perform well in high-
dimensional spaces, avoid over-fitting and have good generalization
capabilities [15]. In our demonstration, a multi-class SVM is used
to classify a given image into one of 4 distortion categories. As we
have shown before, such classification can be achieved with high
accuracy [11].

The distortion-specific quality assessment modules are then im-
plemented using support vector regression (SVR). Theν-SVM is
utilized to perform such a regression [16]. Specifically, for each dis-
tortion that we consider, aν-SVM is trained using quality scores
from the training set (see below) to learn the mapping from the fea-
ture space to subjective quality. When presented with a distorted
image, this regression provides a score representative of the qual-
ity of that image, assuming the presence of the trained distortion.
Note that this technique is generic, and can be used across all distor-
tion types, if the distortions are known. A combination of these two
stages of classification and QA leads to a set of probability estimates
and quality scores which are combined linearly as described before.

One may ponder over the suitability of using an SVR to map
the feature vector onto a quality score. Indeed, even though the
computed feature has been shown to perform well for classification
(since it seems to capture the distortion-specific signatures) [11], it
is unclear if this vector is sufficient for QA. As we shall see, this is
a pertinent question. We have found that for global distortions such
as GB and WN, the computed feature is sufficient for QA; however,
for distortions that manifest locally (eg., JPEG, JPEG2K), these fea-
tures, in their current form, are insufficient for QA (even though they
seem to classify images in these categories with relatively high ac-
curacy). Owing to the modularity of the proposed framework, we
can easily replace the poorly performing QA modules with ones
that perform better and here, as a demonstration, we replace the
JPEG SVR-based QA module with a better-performing one [4]. As
we shall see such a replacement will improve overall BIQI perfor-
mance. Although the feature vector does not perform very well for
JPEG/JPEG2000 compression in its current form, it does not imply
that this feature is useless for QA for these distortions. Future work
will involve understanding how to utilize these features, using HVS-
based properties such as spatial masking [13], and/or properties of
localization [17].

4. RESULTS

The proposed algorithm is evaluated on the LIVE IQA dataset [2].
This dataset consists of 29 reference and 779 distorted images along
with the differential mean opinion score (DMOS) for each distorted
image which was obtained from a large scale human study [2].



Table 1. Median Spearman’s rank ordered correlation coefficient
(SROCC) between algorithm and DMOS.

JP2k JPEG WN Blur All

PSNR 0.8581 0.8782 0.9392 0.7348 0.8567
BIQI-PURE 0.7699 0.6423 0.9513 0.8005 0.7292

BIQI-4D 0.8077 0.9120 0.9543 0.8375 0.8665

Table 2. Median linear correlation coefficient (LCC) between algo-
rithm and DMOS.

JP2k JPEG WN Blur All

PSNR 0.8640 0.8867 0.9255 0.7515 0.8503
BIQI-PURE 0.7775 0.6539 0.9501 0.7675 0.7222

BIQI-4D 0.8128 0.9226 0.9649 0.8232 0.8722

DMOS is representative of the perceived quality of the image, and
a higher correlation of algorithmic scores with DMOS indicates
better performance. The measures of performance used here arethe
Spearman’s rank ordered correlation coefficient (SROCC), the linear
(Pearson’s) correlation coefficient (LCC) and root mean squareder-
ror (RMSE) between algorithm scores and DMOS. LCC and RMSE
are computed after passing the algorithmic scores through a logistic
function as described in [2].

Since we use an SVM and an SVR for distortion classification
and QA, these machines need to be trained in order to learn the
classes and the feature-to-quality mapping. For this purpose, we ran-
domly divide the LIVE dataset into 15 images (and their associated
distorted versions) for training and 14 images (and their associated
distorted versions) for testing . We train the SVM and SVR on the
training set and then compute performance of the test set. The LIVE
dataset is then randomly permuted into another such 15 train-14 test
split and a performance evaluation is again undertaken. This process
is repeated over 1000 such train-test combinations, and the median
of the obtained correlations are reported here. By performing an
analysis in this fashion, we ensure that the training and test set are
disjoint. The sets do not share content, and because of the design of
the dataset, they do not share specific distortion severities as well. In
this way, our algorithm is independent of content and specific dis-
tortion severity. Therefore, our demonstration of the algorithm only
learns the distortion space as a whole, instead of specific distortion
levels.

Even though the classification accuracy is not of import here,
we report the values for completeness. Over such 1000 train-test
combinations, median classification accuracy was 81.5161% (mean
= 81.5161%, std. dev.= 3.1708%).

The results for QA are seen in Tables 1 - 3. In these tables, BIQI-
PURE refers to the version of BIQI where the QA modules are all
based on the SVR mapping from feature space to DMOS. It is clear
that such a QA module performs poorly, especially for JPEG com-
pression. BIQI-4D refers to that version of BIQI where the JPEG
QA module from BIQI-PURE is replaced by the one proposed in
[4]. As can be seen, the overall performance of BIQI improves when
a better performing QA algorithm is utilized. The tables also list
the (median) performance of PSNR - afull-reference algorithm. No-
tice how BIQI-4D is competitive with thefull-reference PSNR. We
believe that the final goal for any NR IQA algorithm is to perform
competitively with present day FR IQA algorithms, and hence we
report PSNR performance here - even though such a comparison is
not entirely fair.

The reader will notice that even though BIQI-4D performs well,

Table 3. Median root mean square error (RMSE) between algorithm
and DMOS.

JP2k JPEG WN Blur All

PSNR 12.67 14.71 10.54 12.14 14.21
BIQI-PURE 15.82 24.08 8.74 11.74 18.73

BIQI-4D 14.68 12.29 7.34 10.45 13.24

there is still some room for improvement in the JPEG2000 case.
There are many solutions to this, including a replacement of the
JPEG2K QA module with a better performing one (for example the
one in [18]). As we have mentioned before, future work will in-
volve an exploration of how the present SVR based QA performance
(BIQI-PURE) may be improved.

In order to get a feel for how BIQI-4D works, in Fig 1, we show
a distorted image from each distortion considered here, the proba-
bilistic output of the SVM-based classifier and the absolute differ-
ence between the predicted DMOS score and the actual DMOS. We
also plot this absolute difference between PSNR score and DMOS
for a comparison. The correct class of distortion forms the title of
the image.

Finally, as we mentioned in the previous section, FF distortion
from the LIVE dataset is a form of secondary/multiply distorted im-
age and does not fit into our linear combination framework. Further,
it is unclear if the computed feature vector is sufficient for FF QA
in its current form. In order to demonstrate that the proposed frame-
work needs to be specifically extended for multiply distorted images,
we report results from a 5-distortion version of BIQI which includes
JPEG, JP2k, GB, WN and FF. The results are reported as the me-
dian SROCC across 1000 trials of train-test pairs as above. Note that
the JPEG QA module in BIQI-5D is the one from [4] as in BIQI-4D.
Overall SROCC of PSNR across these 1000 runs is 0.8535 while that
for BIQI-5D is 0.8195. For the FF distortion, PSNR has SROCC of
0.8592 while that for BIQI-5D is 0.7067.

5. CONCLUSION

We described a novel framework for blind/no reference qual-
ity indices (BIQIs) based on natural scene statistics (NSS). The
proposed framework consists of two stages - probabilistic dis-
torted classification followed by distortion-specific quality assess-
ment. The combination of the two stages leads to a quality in-
dex. Here, we demonstrated a 4-distortion version of BIQI called
BIQI-4D and tested its performance on the LIVE IQA database
and compared its performance to thefull-reference peak signal
to noise ration (PSNR). BIQI-4D was shown to perform com-
petitively with PSNR. Future work will involve extending this
framework to more singular distortions, tackling multiply dis-
torted images and video quality assessment as well. A software
release of the proposed index has been made available online:
http://live.ece.utexas.edu/research/quality/BIQI4D release.zip
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