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Blind Image Quality Assessment Using a General
Regression Neural Network

Chaofeng Li, Member, IEEE, Alan Conrad Bovik, Fellow, IEEE, and Xiaojun Wu

Abstract— We develop a no-reference image quality assessment
(QA) algorithm that deploys a general regression neural network
(GRNN). The new algorithm is trained on and successfully
assesses image quality, relative to human subjectivity, across a
range of distortion types. The features deployed for QA include
the mean value of phase congruency image, the entropy of
phase congruency image, the entropy of the distorted image, and
the gradient of the distorted image. Image quality estimation
is accomplished by approximating the functional relationship
between these features and subjective mean opinion scores using
a GRNN. Our experimental results show that the new method
accords closely with human subjective judgment.

Index Terms— Entropy, general regression neural network,
gradient, image quality assessment, no-reference, phase congru-
ency.

I. INTRODUCTION

ALGORITHMS that automatically assess perceptual
image quality are critical for numerous image processing

applications. This problem is becoming increasingly impor-
tant, owing to the near-ubiquitous presence of digital images
in our daily lives. In recent years, considerable progress has
been made on the problem of assessing quality relative to a
presumed reference image [full-reference (FR) quality assess-
ment (QA)], and a variety of successful FR objective image
quality indices have been proposed that correlate well with
human subjective judgment of quality [1]–[11]. The simplest
and most widely used quality metrics are still the mean square
error (MSE)—the averaging squared intensity differences of
distorted and reference image pixels—and the scaled recipro-
cal of MSE, the peak signal-to-noise ratio (PSNR). However,
the MSE and its variants do not correlate well with subjective
quality measures [12]–[15]. Similarity index (MS-SSIM) [2]
and its variants [9], the visual information fidelity index
[10], and the visual several prominent FR objective metrics
have been demonstrated to have much higher correlation
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with subjective judgment than the MSE, including the multi-
scale structural signal-to-noise ratio [11]. However, these FR
objective metrics require full access to the reference images.

Recently, the video quality experts group (VQEG) [16] has
included RR image/video QA as one of its directions for
future development. In RR algorithms [17]–[19], the reference
image is not available, yet some features extracted from
the reference image are made available. This is quite useful
when the reference information must be transmitted with a
low bandwidth. Yet, in many, and perhaps most possible
applications, the availability of any reference information may
be implausible. Examples include wireless videos received
by cell phones and personal digital assistants, videos on the
internet, images from commercial digital cameras, and so on.
Quite often as least some of the distortions are unguessable
in advance, as is the case, for example, with YouTube videos.
A breakthrough in the development of generic full NR QA is
highly desirable, although the true “blind” problem is often
regarded as nearly unapproachable.

Yet human observers can easily judge the quality of dis-
torted images without recourse to comparison with any refer-
ence image. Our still-limited understanding of both early and
mid-stage processing in the visual cortical and extra-cortical
regions increases this difficulty, as therefore the ultimate
receiver of video is not well-understood. In the case where
distortions are known, considerable progress has been made,
and a variety of successful distortion-specific objective NR
QAs have been proposed. For example, in [20] a natural scene
statistics (NSS) model is used to define a blind measure of
the quality of images compressed by JPEG 2000. In [21]
an NR image QA (IQA) algorithm also targeting JPEG 2000
is advanced based on pixel distortions and edge information.
Blind JPEG QA was considered in [22] using a spatial activity
measure. In [23], a more specific (blur only) NR algorithm
was developed also for JPEG 2000 images. In [24], a generic
NSS-based NR QA algorithm operating in the discrete cosine
transform (DCT) domain was proposed for JPEG or MPEG
signals. Some algorithms do not target a specific compres-
sion algorithm, but rather a class of artifact. In [25], edge
blocking is assessed by an NR algorithm operating on the
fast Fourier transform. In [26], the cross-correlation of sub-
sampled images is used to create a blockiness metric. In [27],
the authors propose a metric based on computing gradients
along block boundaries while tempering the result with a
weighting function based on the human visual system. Other
blind compression-specific QA algorithms were developed in
[28] and [29], both based on block-based DCT coding.
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Recently, several researchers have taken the approach to
estimate the PSNR using the DCT or wavelet coefficients, then
using the estimates for NR image or video QA [30]–[35]. Of
course, since the PSNR itself is a poor objective image and
video quality metric relative to human subjectivity [12], this
approach is questionable.

Machine learning methods are powerful mathematical tools
for solving nonlinear fitting or prediction problems. In partic-
ular, they can be used to construct good approximations of
the functional relationships between known sets of input and
output data. Several researchers have explored the possibility
of using this capability to explore the relationship between
reference and distorted images, viz, to predict image quality.
In [36] and [37] a circular back propagation-based image
quality method was proposed for evaluating the effects of
image enhancement filters, using general pixel-based image
features—such as higher order moments—but without con-
sidering perceptual factors. In [38], a growing and pruning
radial basis function network was deployed to assess JPEG
image artifacts using some loose perceptual features. In [39],
a multilayer perception network was utilized to fuse three NR
metrics into a single device for assessing the distortion in
blurred images. In [40], the authors use singular vectors out
of singular value decomposition as features for quantifying
major structural information in images and then predict image
quality by support vector regression.

In all the above mentioned NR QA methods, the algorithms
developed are intended to assess only a single specific type
of distortion (such as JPEG, JPEG2000, blur, or MPEG).
Naturally, more general NR QA algorithms that are sensitive
to multiple types of distortions are highly desired, since often,
more than one type of distortion may exist in an image,
and moreover, it may be unknown what type of distortion to
expect. Recently, two NR QA algorithms for multiple types of
distortions were reported. In [41], a new two-step framework
called blind image quality index (BIQI) was presented for NR
IQA based on NSS models. First, a classification algorithm
is used to estimate the probabilities of a set of distortions
being present in an image. Then, the severity (quality impact)
of each distortion is assessed separately. The overall quality
of the image is then expressed as a probability-weighted
summation of the separate distortion-specific quality scores.
The algorithm achieves a performance commensurate with
PSNR when tested on the LIVE IQA Database [1]. In [42],
another NR IQA algorithm called the BLIINDS index was
proposed, which predicts image quality based on eight NSS
features expressed as statistics of local DCT coefficients. The
BLIINDS index also achieves performance close to the FR
metric PSNR on the LIVE IQA Database [1]. However, both
BIQI and BLIINDS have trouble handling two of the LIVE
IQA Database distortions: JPEG and Fast Fading (FF) noise.
The approach taken in this paper is complementary to these
very recent approaches. Rather than deploying NSS-based
features, the algorithm presented here utilizes perceptually
relevant features to drive a GRNN-based NR QA algorithm
able to handle multiple distortions.

This paper is organized as follows. Section II reviews related
perceptual features, such as phase congruency, entropy and the

image gradient. A new, GRNN-based IQA model is described
in Section III. Section IV gives experimental results and
discussion of the results. Finally, in Section V, we look toward
future research on this difficult topic.

II. RELEVANT PERCEPTUAL FEATURES

We utilize a number of image features that possess rele-
vant information-bearing, perceptual content. These features
are measurements of complementary aspects of the image
content: phase congruency, local information and gradient.
The first of these measures the degree of coherency of the
local frequencies comprising the image; the second of these
measures the available local information content of the image;
while the third measures the perceptually relevant rate of
change of image luminance. Any one of these loses relevance
without the other two; phase congruence is less relevant where
there is reduced image information and activity, i.e., less
structure. The image information loses perceptual relevance
when the local phase is erratic (random-like) and when the
activity is low. The gradient is less important when the local
information content is low, and there is little structure (phase
congruency).

A. Phase Congruency

Phase congruency is a relatively new concept as an image
feature. Image phase is an appealing quantity within the
context of image quality or faithful representation, since it has
been shown that much of perceptual information in an image
signal is stored in the Fourier phase, rather than the Fourier
amplitude [43], [44]. The underlying principle of phase con-
gruency is that perceptually significant image features occur
at spatial locations where the important Fourier components
are maximally in-phase with one another [45].

Morrone and Owens [45] define the phase congruency
function in terms of the Fourier series expansion of a signal
I at a location x to be

PCI (x) = max
ϕ̄(x)∈[0,2π]

∑
n An cos [ϕn(x) − ϕ̄(x)]

∑
n An

(1)

where An is the amplitude of the nth Fourier component of
I, φn(x) is the local phase of the Fourier component at x ,
and ϕ̄(x) is the average phase at x . The value of ϕ̄(x) that
maximizes (1) is the amplitude weighted mean local phase
angle of all the Fourier terms at coordinate x .

As it stands, phase congruency is a rather awkward quantity
to calculate. As an alternative, points of maximum phase
congruency can be calculated by searching for peaks in the
local energy function, defined as [45]

E(x) =
√

F2(x) + H 2(x) (2)

where F(x) is the signal I (x) with its DC component
removed, and H (x) is the Hilbert transform of F(x). Approx-
imations to F(x) and H (x) can be found by convolving the
signal with a quadrature pair of filters. Then it can be shown
that phase congruency is equal to the ratio between the energy
and the sum of the Fourier amplitudes [46]

PCI (x) = E(x)
∑

n An
. (3)
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In (1), energy is proportional to the cosine of the weighted
deviation of phase angle φn(x) from the mean phase. Although
the cosine function is maximized when φn(x) becomes equal
to the mean phase, a significant difference between φn(x) and
the mean phase must occur before its value falls appreciably.
Using the cosine of the phase deviation allows an insensitive
measure of phase congruency [47].

Another measure of phase congruency that is easier to
compute was developed in [47]

PCI I (x) =
∑

n W (x) �An(x)�φn(x) − T �
∑

n An(x) + ε
(4)

where �� is a floor function that leaves the argument
unchanged if non-negative, and zero otherwise; An(x) =√

en(x)2 + on(x)2 is the amplitude at a given wavelet
scale, [en(x), on(x)] = [I (x) ∗ Me

n , I (x) ∗ Mo
n ], I is the

image signal, and Me
n and Mo

n are the even-symmetric
(cosine) and odd-symmetric (sine) wavelets at a scale
n; �φn(x) = cos[φn(x) − φ̄(x)] − |sin[φn(x) − φ̄(x)]|
is a sensitive measure of phase deviation; W (x) =
1/(1 + er(c−s(x))) is a tapered weighting function, where
s(x) = (1/N)(

∑
n An(x)/Amax(x) + ε), and where c is the

cut-off value of filter response spread below which phase
congruency values become penalized and γ is a gain factor
that controls the sharpness of the cutoff; T is an estimate of
the noise level (as detailed in [47]), and ε is a small constant
that avoids division by zero.

Phase congruency appears to be perceptually relevant [48].
For example, Fig. 1 shows the “couple” image and the cor-
responding phase congruency image, which highlights many
image regions that are of structural significance. Phase con-
gruency has been applied to a variety of image process-
ing problems, including compression and reconstruction [49],
symmetry detection [50], segmentation [51], text recognition
[52], [53], face recognition [54], [55], feature detection [47],
[56], [57], and so on. In [58], the correlation between local
phase coherence and the perception of blur was analyzed.
However, phase congruency appears not to have been used
to create image quality indices. In [59], the author used phase
congruency to measure FR image similarity.

We believe that phase congruency is a relevant feature
for blind IQA that does not require a comparison (refer-
ence) image. Phase distortions lead to significant percep-
tual image degradations, and can arise from many differ-
ent distortion processes. Disruptions in the congruency of
phase in an image may correlate well with perception of
phase distortions. For computational reasons, we use the
definition of phase congruency in (4). The MATLAB code
for calculating phase congruency can be found at http://
www.csse.uwa.edu.au/∼pk/Research/MatlabFns/index.html.

B. Image Entropy

The sample entropy of the image I [60] is

EI = −
∑

n
p(n) log2 p(n) (5)

where p(n) denotes the empirical probability of luminance
value n. Here, the MATLAB function entropy() will be used

(a)

(b)

(c)

Fig. 1. Image “couple” and the associated phase congruency map. (a) Original
image. (b) Noise contaminated image. (c) Blurred image.
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Fig. 2. Sobel operator masks.

to compute the entropy of images. It has been used in a
variety of ways, but only a few that are directly relevant to
our application.

In [61], the entropy is used to identify the anisotropy of
images. Following this, the authors of [62] deploy the entropy
to measure the anisotropy of images, and use this statistic for
blind IQA. The method appears to show promise, but was not
extensively tested.

C. Image Gradient

The gradient ∇ I = [∇ Ix ,∇ Iy] is large when there are
significant luminance variations in the image I , whether
arising from discontinuous structures, from textured structures,
or from random effects. A simple and robust measurement of
the horizontal and vertical components of the gradient of I
is generated by convolving I with the 3 × 3 Sobel operator
masks shown in Fig. 2.

As usual, the gradient amplitude is estimated as the square
root of the sum of the directional derivative estimates. For
example, the mean value of the gradient amplitude of the
Image “couple” in Fig. 1(a)–(c) is 71.93, 86.84, and 47.70,
respectively.
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Fig. 3. Schematic diagram of GRNN for assessing image quality.

III. GRNN IMAGE QUALITY MODEL

The general regression neural network (GRNN) is a pow-
erful regression tool that has a dynamic network structure
[63], [64]. It is based on established statistical principles,
and asymptotically converges with an increasing number of
samples to the optimal regression surface [65]. GRNN has
been observed to yield better results than the back-propagation
network or RBF network in terms of prediction performance

[65], [66]. For an input vector X , the output
�
Y of the GRNN

is [63]

�
Y (X) =

n∑

i=1
Yi exp(−D2

i /2σ 2)

n∑

i=1
exp(−D2

i /2σ 2)

(6)

where n is the number of sample observations; D2
i = (X −

Xi )
T(X − Xi ); Xi and Yi are sample values; and σ is the

spread parameter. The larger the value of σ , the smoother the
functional approximation. In order to fit the data very closely,
the selected value of the spread parameter should be smaller
than the average distance between the input vectors.

A schematic diagram of the GRNN IQA architecture is
shown in Fig. 3 (inside dashed box), which consists of four
layers: the input layer, the pattern layer, the summation layer
and the output layer. The number of inputs is equal to the
number of independent features. Each unit in the pattern layer
represents a training pattern. The summation layer includes
two units: the first unit sums all the outputs of the pattern
layer and assesses the numerator of (6), while the second unit
assesses the denominator of (6). Each node in the pattern layer
is connected to each of the two nodes in the summation layer.
The weight on the connection between node i in the pattern
layer and the first node of the summation layer is equal to
Yi . The weight of the connection between any node i in the
pattern layer and the second node in the summation layer is
equal to unity. The output unit computes the quotient of the
two outputs of the summation layer, yielding the predicted
value of the dependent feature.

IV. EXPERIMENTS AND DISCUSSIONS

We selected the GRNN for the purpose of assessing image
quality owing to its excellent prediction power. We use

four perceptually motivated features as inputs to the GRNN,
derived from those given in Section II: 1) the mean value
of the phase congruency image of distorted image (MPC);
2) the entropy of the phase congruency image of distorted
image (EPC); 3) the entropy of the distorted image (EDIS);
and 4) the mean value of the gradient magnitude of the
distorted image (MGDIS).

The GRNN was implemented using the MATLAB func-
tion newgrnn. The only parameter to be determined is the
smoothness-of-fit parameter σ . Since there is no a priori
method of selecting this parameter, we tried a variety of values
in the range 0.01–0.1 for blind IQA.

A. Testing on LIVE Database

In our simulations we used the popular LIVE IQA Database
[67]. This database includes five types of distorted images:
JPEG, JPEG2000 (JP2K), White Noise (WN), Blur and FF.
The database contains 29 different images and a total of 982
images (reference and distorted). In the following experiments,
we remove all reference images from the database, and leave
779 images for training and testing. The database reflects the
result of a large human study [1], and includes differential
mean opinion scores (DMOS) for each distorted image.

Three performance measures are used to evaluate the algo-
rithm. The first is the Spearman rank order correlation coeffi-
cient (SROCC) which measures the prediction monotonicity
of the quality index. The second and third are the linear
correlation coefficient (LCC) and the root MSE (RMSE) after
non-linear regression. For the latter two measures, the logistic
function specified in [68] was used to fit the model predictions
to the subjective data.

The following procedure was used to test the new NR IQA
algorithm. First, we divided the LIVE IQA Database into five
datasets, each including six or five groups of images having
identical content but different and varied levels of distortion, as
shown in Table I. No content is shared between these smaller
datasets. Cross validation was applied to these five datasets
(each of the five datasets was used as the test set in turn,
viz., 5-fold cross validation was used), yielding the results
shown in Table II. We used the two recent NR IQA algorithms
(BIQI [41] and BLIINDS [42] index) and two FR methods
[PSNR and single-scale structural similarity (SS-SSIM)] for
comparison. The spread parameter for fitting was set to 0.04.
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TABLE I

IMAGE CATEGORIES FOR DIFFERENT DATA SETS

Data Image Categories

Dataset 1 Bikes, house, paintedhouse,
sailing1, statue, dancers

Dataset 2 Caps, cemetery, manfishing,
lighthouse, sailing4, coinsinfountain

Dataset 3 Carnivaldolls, monarch,
studentsculpture, ocean, parrots,
sailing2

Dataset 4 Woman, flowersonih35, buildings,
sailing3, stream, plane

Dataset 5 Churchandcapitol, lighthouse2,
building2, womanhat, rapids

TABLE II

IQA RESULTS ON LIVE IQA DATABASE

Method SROCC LCC RMS

GRNN

Dataset 1 0.8133 0.8274 8.9923

Dataset 2 0.8275 0.8260 8.4987

Dataset 3 0.8855 0.8943 7.0847

Dataset 4 0.7883 0.8159 9.5607

Dataset 5 0.8194 0.8234 9.6114

Average 0.8268 0.8374 8.7495

BIQI [40] 0.8195 0.8205 15.6223

BLIINDS [41] 0.7996 N/A N/A

PSNR 0.8197 0.8229 9.0929

SS-SSIM 0.8510 0.8636 8.1253

In order to make the comparisons, we also plot the SROCC
achieved by the new algorithm as the spread parameter is
allowed to vary (Fig. 4).

From Table II, it can be seen that the GRNN-based algo-
rithm outperforms the BIQI and BLIINDS indices and the FR
index PSNR, although is a little inferior to the widely used
FR index SS-SSIM. This is a remarkable result for an NR
algorithm.

In order to further verify the performance of the phase
congruency/entropy/gradient GRNN-based IQA algorithm, we
also tested the GRNN-based algorithm on each distortion type
in the LIVE IQA Database. Using the above trained GRNN-
based IQA model, image quality is predicted on each distortion
type yielding the results shown in Tables III and IV using 5-
fold cross-validation.

Again, from these results, it can be seen that the GRNN-
based algorithm outperforms the NR index BIQI, outperforms
the FR index PSNR on the LIVE JPEG and Blur (sub)
databases, and also performs well relative to SS-SSIM on the
LIVE WN Database.

B. Perceptual Feature Analysis

In order to study the respective contributions of each feature
that contributes to the overall quality score in the GRNN-based
algorithm, we remove one input feature in turn, and then use
the other three features to train and test the GRNN-based QA

TABLE III

SROCC BETWEEN ALGORITHM AND DMOS

Method JP2K JPEG WN Blur FF

GRNN

Dataset1 0.7760 0.9058 0.9813 0.8216 0.7504

Dataset2 0.7356 0.8504 0.9782 0.8736 0.7753

Dataset3 0.8649 0.8847 0.9786 0.8861 0.7900

Dataset4 0.8078 0.8882 0.9795 0.6872 0.6921

Dataset5 0.8937 0.8315 0.9792 0.8969 0.6692

Average 0.8156 0.8721 0.9794 0.8331 0.7354

BIQI [40] 0.7995 0.8914 0.9510 0.8463 0.7067

PSNR 0.8898 0.8409 0.9853 0.7816 0.8903

SS-SSIM 0.9317 0.9028 0.9629 0.8942 0.9411

TABLE IV

LCC BETWEEN ALGORITHM AND DMOS

Method JP2K JPEG WN Blur FF

GRNN

Dataset 1 0.8163 0.9007 0.9891 0.8278 0.7732

Dataset 2 0.7251 0.8510 0.9885 0.8767 0.7925

Dataset 3 0.8439 0.9277 0.9886 0.9205 0.8533

Dataset 4 0.8052 0.9051 0.9887 0.6937 0.9387

Dataset 5 0.9474 0.8145 0.9884 0.8062 0.7369

Average 0.8276 0.8798 0.9887 0.8250 0.8189

BIQI [40] 0.8086 0.9011 0.9538 0.8293 0.7328

PSNR 0.8878 0.8596 0.9813 0.7840 0.8752

SSIM 0.9368 0.9297 0.9793 0.8741 0.9452

TABLE V

SROCC BETWEEN ALGORITHM AND DMOS BY INPUT FEATURE

Used
feature

EPC
+EDIS

+MGDIS

MPC
+EDIS

+MGDIS

MPC
+EPC

+MGDIS

MPC
+EPC
+EDIS

SROCC 0.7372 0.8200 0.7523 0.7449

SR
O

C
C

0.84

0.01 0.02 0.03 0.04 0.05 0.06

The spread parameter of GRNN

0.07 0.08 0.09 0.1

0.82

0.8

0.78

0.76

0.74

0.72

0.7

Fig. 4. Plot of SROCC against spread parameter.

network by the above method, and yield the SROCC between
the quality score and DMOS shown in Table V. A smaller
value of the SROCC implies a bigger contribution from the
removed feature. In this way, we can order the contributions
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of the four input features in descending: MPC, MGDIS, EDIS,
EPC. Since the EPC feature has little contribution to QA, we
can ignore the EPC feature in actual application.

V. CONCLUSION

We developed a NR image quality prediction model
based on several complementary and perceptually relevant
image features fed to a GRNN network. The relationship
between the extracted features and DMOS is modeled by the
GRNN network. We found that the resulting image quality
index produces results on the LIVE Image Quality Data-
base that are generally comparable with competitive FR QA
algorithms.

Looking forward, we are seeking to better characterize
the functional relationship that exists between the perceptual
feature set that we deployed, and recorded subjective scores.
We are also investigating methods for efficiently extending
the GRNN-based framework to video QA. Impairments are
more complex and motion-related in video, making this a more
challenging exercise.
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