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Abstract Creating algorithms capable of predicting the perceived quality of a visual

stimulus defines the field of objective visual quality assessment (QA). The field of ob-

jective QA has received tremendous attention in the recent past, with many successful

algorithms being proposed for this purpose. Our concern here is not with the past

however; in this paper we discuss our vision for the future of visual quality assessment

research.

We first introduce the area of quality assessment and state its relevance. We de-

scribe current standards for gauging algorithmic performance and define terms that

we will use through this paper. We then journey through 2D image and video quality

assessment. We summarize recent approaches to these problems and discuss in detail

our vision for future research on the problems of full-reference and no-reference 2D

image and video quality assessment. From there, we move on to the currently popular

area of 3D QA. We discuss recent databases, algorithms and 3D quality of experience.

This yet-nascent technology provides for tremendous scope in terms of research activ-

ities and we summarize each of them. We then move on to more esoteric topics such

as algorithmic assessment of aesthetics in natural images and in art. We discuss cur-

rent research and hypothesize about possible paths to tread. Towards the end of this

article, we discuss some other areas of interest including high-definition (HD) quality

assessment, immersive environments and so on before summarizing interesting avenues

for future work in multimedia (i.e., audio-visual) quality assessment.
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1 Introduction

Man is a visual animal. Through evolution, man has always been fascinated by what he

can see and imagine and has endeavored to re-create this world on canvas - from pre-

historic cave paintings to modern-day films accompanied by sounds and visual effects.

Although arguments on the reason for cave paintings persist, it is clear that at least in

today’s world, much of the created visual stimuli are for entertainment or informational

purposes.

The urge to capture the world around us has lead to the creation of devices which

are increasingly capable of doing so, and burgeoning demand has lead to increasing

availability at ever-reducing costs. Transmission, storage and display of visual stimuli

have also escalated. At the end of this chain is the receiver - the human observer. It

should be obvious that with so many different devices capturing, storing, compressing,

transmitting and displaying visual stimuli, the receiver is bound to receive stimuli of

varying levels of palatability. Research in the area of visual quality assessment has

aimed to algorithmically capture this palatability of visual stimuli.

Before we proceed, it is necessary to disambiguate certain terms that we will utilize

throughout this paper. Visual stimulus is a generic term that encompasses 2D images,

2D videos, 3D images, 3D videos, immersive viewing environments and so on. Essen-

tially, any captured stimulus that is incident upon the eyes is referred to as a visual

stimulus.

Objective quality assessment (QA) refers to creation of algorithms that gauge the

perceived quality of these visual stimuli. This definition necessitates the definition of

what one means by ‘perceived’ quality. Since the ultimate receiver of any visual stim-

ulus is a human observer, her opinion of quality is what is of import and is referred

to as the perceived quality of the stimulus. An obvious question then is, how does one

gauge this perceived quality? Such human perceived quality is gauged by conducting

a large scale human study where a sizeable quantity of human observers are shown a

series of visual stimuli whose quality they are asked to rate on a particular scale. The

mean score of the these stimuli (after accounting for outlier subjects) is termed the

mean opinion score (MOS) and is representative of the perceived quality of the stimuli.

Such human assessment of quality is referred to as subjective quality assessment. Such

large scale publicly available quality assessment databases exist for 2D image quality

assessment (IQA) [70], [57] and 2D video quality assessment (VQA) [49], [67]. Recently,

researchers have also proposed databases for 3D IQA [25] and 3D VQA [24]. These 3D

QA databases are not ‘quality’ assessment databases in the sense used for the 2D case

- we will have a lot to say about this later on.

The performance of any objective visual quality assessment algorithm is gauged by

measuring its correlation with human perception. In order to do so, subjective studies

as described above are carried out and the quality scores of the algorithm are corre-

lated with MOS using a variety of statistical measures such as the Spearman’s rank

ordered correlation coefficient (SROCC), the linear correlation coefficient (LCC), root-

mean-squared error (RMSE), outlier ratio (OR) and so on [72], between the objective

and subjective scores. Since objective algorithms need not correlate linearly with the

subjective scores, LCC and RMSE are generally computed after passing the objective

scores through a logistic non-linearity [77]. SROCC and LCC values close to 1 and

RMSE, OR values close to 0 indicate that the algorithm performs well. Further, sta-

tistical significance tests such as ANOVA [72] are used to gauge the significance of
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algorithm performance [77], [67], [70], [49]. Though these measures of performance are

generally accepted and followed, researchers have also proposed various other measures

of performance evaluation [87].

Objective algorithms themselves are generally categorized as (1) full-reference (FR),

(2) no-reference (NR) and (3) reduced-reference (RR) algorithms [82] as seen in Fig.

1.

FR algorithms are those that need access to an original ‘pristine’ reference stimu-

lus to produce a quality score that predicts the subjective judgment of the distorted

stimulus.

At the other end of the spectrum are NR algorithms which require only the distorted

stimulus to predict quality scores.

Finally, RR algorithms lie somewhere in-between these two extremes, where the

algorithm requires some information about the reference stimulus (eg., watermarking

[8], auxillary channel [37] etc.) but not the reference stimulus itself.

In making this classification, an assumption that we have made is that ‘quality’

is related to the presence or absence of distortions. In the 2-D case these definitions

are perfectly valid, however, when one moves on to the 3-D case, the division between

quality of experience and quality due to distortion becomes ambiguous. Here, we shall

make this disambiguation explicit and hence when we refer to quality alone, we imply

quality due to presence of distortion; quality of experience is explicitly referred to as

quality of experience. By this definition, the aforementioned databases for 3D quality

[24], [25], are quality of experience databases.

Now that we have journeyed through the various terms one is bound to encounter

in the area of visual quality , we beg the reader’s indulgence as we paint a rough picture

of what the future holds for this exciting field of visual quality assessment. We begin

at 2D IQA (Section 2.1 and make our way into the spatio-temporal world with 2D

VQA (Section 2.2). We then continue onto 3D QA (Section 3.1) and cover portions of

what we have termed ‘quality of experience’ (Section 3.2), which is especially relevant

in 3D perception. Further, we explore the interesting realm of visual aesthetics and

its relationship to quality (Section 4), where we also briefly touch upon how content

influences quality/aesthetic ratings. Finally, although this chapter is focused on ‘visual’

quality, in section 5, we discuss multimedia quality assessment (a.k.a. multimodal QA)

and mention in passing other interesting avenues of research including QA on hand-held

devices, immersive environments and so on.

Before delving into the heart of the subject, we would like to emphasize that what

we describe here is simply a rough outline of areas that we think will be relevant

for research. Our lack of clairvoyant abilities implies that this list is by no means

comprehensive. Further, we have chosen to focus on certain areas more than others,

but this in no way negates the research opportunities that may present themselves in

those areas (for example RR QA [37]).

2 2D Quality Assessment

2D quality assessment of images and videos has a rich history and the reader is directed

to [66], [82], [48], [65] for descriptions of various algorithms. Descriptions of quality

assessment databases which provide the reference stimuli, the distorted stimuli and
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Fig. 1 Objective image quality assessment approaches: Full-reference - needs both the refer-
ence and distorted images, reduced-reference - needs the distorted image and some additional
information regarding the original and no-reference - needs only the distorted image. All algo-
rithms are evaluated for their performance using a human mean opinion score.

the associated human opinion scores in order to test algorithm performance can be

found in [70], [1], [57] for images and in [49], [67] for videos. These descriptions also

include performance evaluation of various leading quality assessment algorithms as well

as links to the actual datasets, which are publicly available to researchers at no cost.

Our discussion on 2D QA is split into image quality assessment (IQA) and video

quality assessment (VQA).

2.1 2D Image Quality

2.1.1 Full-reference algorithms

Approaches to objective 2D FR IQA include those based on explicit modeling of the

HVS [27], [11], feature based approaches [73] and natural scene statistics based ap-

proaches [69]. Large scale studies analyzing algorithm performance have demonstrated

that the structural similarity index (SSIM) [81] and the information-theoretic visual

information fidelity (VIF) [69] index not only have statistically significant performance

compared with the often criticized peak signal to noise ratio (PSNR) [23], [80], but are

also the leading performers in terms of correlation with human perception compared

with other approaches to IQA [69], [57]. Although many other perceptually motivated
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approaches to IQA have later been proposed [11], SSIM and VIF remain leading per-

formers.

The simplicity of the SSIM index, coupled with its impressive performance has lead

to a plethora of research aiming to better performance [14], [44], [35]. Although some of

these techniques have demonstrated a slight improvement over SSIM, the gains achieved

in performance are very small and statistically insignificant. Hence, it seems that the

field of 2D FR IQA has currently plateaued. By this, we mean that additional gains

achieved in performance would be minimal and the cost associated with achieving this

performance would not justify the paltry gains. Having said that however, we believe

that there exist many sub-fields which have not been explored as much.

One interesting direction of future research in 2D FR IQA would be efficient quality

computation [58], [15]. Even though this may not be as relevant for IQA, lessons from

this field could be applied to 2D VQA so as to enable real-time implementation of

quality measures.

Again, although many successful approaches to QA have been proposed, only re-

cently have these algorithms been used for benchmarking. Further, optimization of

image processing algorithms using perceptual measures of visual quality as objective

functions remains relatively unexplored. Some researchers have attempted to perform

de-noising and linear filtering using quality indices as the optimality criterion instead

of the popular mean squared error (MSE) [12], [13]. However, a lot needs to be done in

this field. An IQA algorithm that correlates well with human perception could be used

to perform optimal compression or filtering. Complicated models such as VIF do not

lend themselves to a form that makes such operations easier, and future work would

involve analyzing these measures to enable such optimal compression/filtering. These

applications of QA algorithms aside, development of QA algorithms has an interesting

future as well.

As we mentioned before, we believe that 2D FR IQA algorithms have achieved

saturation in performance. However, it is our hope that as we understand the HVS

better, QA models based on the HVS would indeed achieve significant improvement

in performance. Further, investigation of eye-movements for the task of quality assess-

ment is another exciting area for future work. Although some effort has gone towards

understanding fixations and eye-movements [92], as well as their utility in quality as-

sessment [44], [42], [7], [79], [78], [52], [46], we believe that this area has tremendous

potential for creating better IQA algorithms.

In summary, we envision the future of 2D FR IQA algorithm research to draw

greater inspiration from the HVS, leading to algorithms that perform the task of QA

nearly as well as humans. Further, applications of such objective QA measures for

various image processing tasks remain of interest.

2.1.2 No-reference algorithms

Traditionally, NR IQA algorithms have been distortion-specific. For example, there

exist a plethora of algorithms that seek to assess the quality of blurred images [39],

[61], [51], [93], [16], or those that assess the quality of compressed images - JPEG [41],

[5], [86], JPEG2000 [56], [55], [71]. In these NR algorithms, distortion specific indicators

of quality are computed and then ‘mapped’ onto the quality scale by using subjective

opinion scores. Generally, most of these algorithms extract edge information and look

for either edge-spread or distribution of edges to assess quality of blur or ringing (seen

in JPEG2000 compression). In the case of JPEG compression, blockiness is measured at
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block-boundaries along with a measure of blur. These measures of distortion-specific

indicators are then combined using a parametric form, the parameters of which are

estimated using a subjective database.

Thus, although much work has gone into NR IQA, most of the work has cen-

tered around distortion-specific algorithms. Only recently have approaches that are

distortion-independent been proposed in the literature [60], [45], both of which are

based on the statistical properties of natural images. In [60], a DCT-domain-based

approach is undertaken, where relevant features (including some inspired by [22]) are

computed and then combined using a parametric approach to produce quality. On the

other hand, in [45], a two-step framework for NR IQA has been proposed where the

distortion-category is first identified (using techniques inspired from [88]) and then

distortion-specific QA is performed. Since both these approaches are based on a train-

test combination, these approaches are still not completely distortion-independent.

The astute reader would have already guessed where we think the future of NR

IQA lies. Since distortion-specific QA algorithms are a dime-a-dozen, and many of

these algorithms perform very well, we believe that distortion-independent NR IQA

algorithms that are capable of assessing the perceived quality of any distorted im-

age will be a major objective of future research; although research may continue in

distortion-specific algorithms, seeking to better performance. Further, current NR IQA

performance (distortion-specific or otherwise) does not match up to that of FR IQA

algorithms. As with the FR case, we believe that incorporating perceptual mechanisms

in NR IQA will benefit these algorithms, thereby pushing their performance to that of

the theoretical null model [70].

There is an interesting aspect to IQA that generally remains un-noticed. Current

algorithm performance is gauged on publicly available IQA databases. Although these

databases incorporate various distortion categories1 most of these categories tend to be

singular distortions i.e., either compression or noise or blur. To the best of our knowl-

edge there does not exist a database that specifically incorporates multiply distorted

images and subjective quality scores. For example, would humans rate a noisy im-

age (say caused by camera sensor noise) that is heavily compressed (for transmission)

worse than images that are only noisy or only compressed? If yes, then how do these

distortions interact with each other to affect perceived quality? Does one category of

distortion mask the presence of the other? How do relative distortion strengths factor

into perceived quality? Moving beyond just two distortions, one could imagine a case

where the image was truly multiply distorted - eg., a noisy image, compressed and then

transmitted over a lossy channel.

Although the area of multiply distorted images is an interesting one for research,

not much work has been done in this direction [30], [21]. It is unclear if even leading

FR IQA algorithms would correlate well with human perception in this case. Hence,

creating such a multiply distorted image database accompanied by human subjective

scores is an interesting area of future research. One would imagine that such databases

will lead to new FR IQA algorithms that are capable of predicting perceived quality

in these cases. It goes without saying that a holy grail of QA research would be an NR

IQA algorithm that performs as well as (or better than) FR IQA algorithms even for

such multiply distorted images.

1 For eg., the LIVE IQA database has 5 distortion categories [70], while the TID2008
database incorporates 17 distortion classes [57]!
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2.2 2D Video Quality Assessment

2.2.1 Full-reference algorithms

Simple approaches to 2D VQA involve application of a 2D IQA algorithm on a frame-

by-frame basis. For example, one could compute the quality of a video using MSE

or SSIM as a criterion, where MSE/SSIM is computed on each frame and the mean

quality of the video is a Minkowski summation of the frame-level scores [84]. However,

as many authors have pointed out, motion information is extremely important for

VQA [84], [83], [64], [4], [43], [53]. Recently many successful algorithms that utilize

motion information have been proposed and shown to perform well [64], [43]. A recent

comprehensive study of leading FR VQA algorithms indicated that the motion-based

video integrity evaluation (MOVIE) index [64] performed exceptionally well in terms

of correlation with human perception, and that PSNR is one of the worst indicators of

perceived quality.

Although algorithms that incorporate motion information and seek inspiration from

the human visual system do well on the recently proposed LIVE video quality database

[67], there is still room for improvement2. However, our opinion is that significant

improvements can only be achieved by algorithms that employ advanced human visual

system models.

As with FR IQA, efficient computation of FR VQA algorithms is an interesting

direction of future research, especially when it comes to practical application of VQA

algorithms. The challenge is to maintain acceptable performance in terms of correlation

with human perception while still allowing for (near) real-time performance. Indeed,

some researchers have already tackled this problem for the popular SSIM index [15]

when applied to VQA. Apart from extending already proposed approaches for VQA,

creating algorithms that are capable of real-time quality prediction remain of interest.

We discussed human attention and its use in the context of FR IQA; however,

fixation prediction and human attention have even more relevance for VQA. Predicting

human fixation locations accurately can help not only in efficient compression but also

in developing algorithms that predict perceptual quality. In the case of FR VQA,

one would imagine that extracting low-level features from the reference video would

make possible improved prediction of fixations and hence of quality. Having said that

however, there has been some evidence to show that distortions affect human fixations

[46] and analyzing how distortions affect these fixations is another path that may be

of relevance for VQA - especially in the case of NR VQA.

2.2.2 No-reference algorithms

NR VQA algorithms have not received much attention and most NR VQA algorithms

are geared towards compressed videos [74], [90], [75], [91]. Generally, measures of block-

iness or blur are evaluated and related to quality. Other approaches to VQA for videos

transmitted through lossy networks include computing the number of packets lost, the

type of packet lost and certain other features from the byte stream which are then

mapped on to quality [50], [29]. A truly blind VQA algorithm that predicts the quality

of any distorted video sequence is still to materialize.

2 The best performing algorithm - MOVIE [64] has an SROCC of ∼ 0.79 with human
perception.
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In order to achieve this goal, ideas from successful FR VQA approaches are rel-

evant. We believe that NR VQA algorithms that incorporate perceptual models and

motion information will be more likely to succeed in the task of quality assessment.

Indeed, recent research on statistics of motion information [59] leads one to believe

that analyzing motion from distorted videos would lead to a good indicator of qual-

ity. Further, as we discussed above, including human attentional mechanisms that are

geared to predict human attention when viewing distorted videos remains of interest.

Although algorithms have been proposed for the task of NR VQA, a systematic

evaluation of these algorithms, along the lines of those undertaken for FR VQA [67],

[49] is missing. In order to compare algorithms in a fair manner, it is imperative that

their performances be evaluated on a publicly available database using agreed-upon

statistical analysis for performance evaluation. Future work could involve such a large

scale comparison that can then be utilized to accurately measure the performance of

an algorithm.

In the case of VQA, the temporal aspect has unique importance. Though much

work has been done in terms of spatial pooling strategies for IQA [85], [44], little has

been done in terms of temporal pooling strategies for VQA. Further, evaluating and

incorporating memory effects for longer videos may lead to better temporal pooling

strategies.

As with the IQA case, both FR and NR VQA algorithms have been rarely utilized

for practical applications such as quality-based compression, or denoising [76]. We

believe that the future of VQA algorithm research could revolve around such practical

applications of algorithmic quality assessment. Other applications could include VQA

algorithm-based rate-distortion optimization, motion-estimation etc.

3 3D Quality Assessment

Even though 3D stimuli have been around for a long time [40], and 3D movies were

popular over 3 decades ago, interest in 3D stimuli had not caught on until recently.

Hollywood’s current fascination with 3D technology coupled with an increasing number

of manufacturers churning out 3D TVs, 3D displays and 3D hand-held devices has made

research in 3D quality assessment an extremely interesting area recently.

In the case of 3D, as we mentioned in the introduction, there is an added dimension

to the problem of perceptual quality - the quality of 3D experience. Since the term

‘quality assessment’ has been traditionally applied to gauging the quality of impaired

stimuli, we shall persist with that definition here. The term ‘quality of experience

assessment (QoE)’ we shall reserve for algorithmically assessing the visuo-sensory 3D

experience such as the perception of depth, naturalness of visual stimulus (i.e., avoiding

the puppet theatre effect), visual comfort, ability to fuse the stereoscopic pairs and so

on. Our discussion is split into 3D QA and 3D QoE assessment.

3.1 3D Quality Assessment

The field of 3D QA, although closely related to 2D QA, is a far more difficult problem

to address. This is primarily because the algorithm does not have access to the per-

ceived visuo-sensory 3D experience of the human created by the stereoscopic stimuli.
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The algorithm simply has access to the stereo-pair of images and possibly associated

disparity/depth (generally computed using an algorithm). The challenge then is to

somehow utilize the available information and transcend this boundary between the

stereo-pair and the visuo-sensory experience. Although many 3D QA algorithms have

recently been proposed in literature [63], [26], [9], it is unclear if simple extensions

of 2D QA measures, coupled with some disparity information, are sufficient to gauge

perceived 3D quality. It is our opinion that future work in the area of 3D QA will aim

to bridge this gap in order to better gauge perceived quality.

Further, at this point of time it is unclear how depth information affects/masks

distortions. Although some researchers have claimed that the addition of depth infor-

mation does not improve prediction quality of 3D QA algorithms [9], much work needs

to be done in this area to understand stereoscopic masking and to apply this princi-

ple to 3D QA. Further, many related phenomena such as inter-ocular rivalry need to

be evaluated in order to arrive at an accurate measure of quality. It is also unclear

how much the perception of depth affects user ratings. For example, certain distortion

categories such as noise do not destroy depth information; however other distortions

such as compression/packet-loss may lead to a loss in perception of depth. In these

cases, it is unclear how the subjective rating of quality is affected by such losses in

depth. Psychovisual experiments need to be conducted in order to arrive at possible

hypotheses.

Closely related to QA is the field of compression. For 3D QA, compression of

the stereo-pair is extremely relevant, especially in low-bandwidth scenarios. There are

some results which state that the human defaults to that quality score which is superior

between the stereo pair [68]. This implies that one may compress one view with a much

higher compression ratio than the other. Again, research needs to be undertaken in this

field of asymmetric distortion - not only for compression but also for other categories

of distortions.

Gauging the performance of any QA algorithm necessitates the presence of a

database with human subjective scores. Although a few databases have been proposed

in the literature [2], none of these databases are accompanied by precision depth-maps.

The depth/disparity information is generally obtained using a disparity estimation al-

gorithm. Since disparity estimation is still an ongoing area of research, such algorithmic

disparity maps may hinder development of 3D QA algorithms. It is hence imperative

that the subjective databases for 3D QA incorporate high-precision range maps along

with the stereo-pair. We have recently developed such a database, and although the

database may not be publicly available before this article goes to press, information

about the LIVE 3D QA database may be found at [34]. This database consists of 20

reference and 400 distorted stereo pairs encompassing 5 distortion classes, accompa-

nied by high-precision range maps obtained from a Reigel terrestrial range scanner.

We believe that this database will aid researchers in developing high quality 3D QA

algorithms.

The above discussion is equally valid for image and video quality assessment. How-

ever, when one moves on to 3D VQA, the interaction between motion and depth, tem-

poral, spatial and stereoscopic masking will play an important role in the development

of algorithms. We are unaware of any systematic study that attempts to understand

these interactions and we believe that there is ample scope for research in this area.
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3.2 3D Quality of Experience

Although 3D visual stimuli have come a long way since the 1960’s, even today 3D

viewing for extended periods of time can be accompanied by visual strain and dis-

comfort [20], [40]. Understanding what causes this strain and how capture and display

technologies may be modified to alleviate such strain is an interesting area of research.

Such strain may be due to the actual stimuli or the rendering process (think cross-talk

for example), causing an unnatural viewing experience, which reduces the quality of

experience. Designing algorithms which can predict the human 3D experience and pro-

vide an index onto eye-strain or discomfort during viewing will be an invaluable asset

to developers of 3D content. As with all visual quality, such algorithms will benefit

from a better understanding of human stereo processing and advances in psychovisual

research will help develop these QoE algorithms.

As with 3D QA, QoE requires databases, and researchers at EPFL have recently

proposed two such databases - one for images [25], and the other for videos [24]. Al-

though small, these databases represent a first step toward understanding 3D quality of

experience and are the foundation for many such databases seeking to assess perceived

3D experience.

It is pertinent to note that 3D QoE is a blind problem - there is no reference stimulus

against which the QoE can be measured. In this case, understanding the statistical

properties of 3D natural environments and human attention in such environments may

benefit QoE algorithms.

Finally, judging the overall quality of a (possibly distorted) 3D stimulus, would

involve a confluence of lessons from 3D QA and 3D QoE assessment and would again

be an interesting direction to pursue research.

4 Aesthetics, Quality and Content

Visual aesthetics is a measure of the perceived beauty of a visual stimulus and in the

recent past, there has been some interest in algorithmically evaluating this perceived

beauty [36], [17], [31], [38], [47]. Objective assessment of aesthetics is naturally ‘blind’

- i.e., given an image to be evaluated, there does not exist a corresponding image with

‘perfect’ aesthetics. Of course, this does not nullify the possibility of comparing the

aesthetic appeal of two images. The goal of algorithmic aesthetic assessment then is

to predict aesthetic scores (similar to quality scores) having a high correlation with

human perception.

‘Aesthetics’ by itself is highly subjective and hence objective assessment of aes-

thetics is a far more difficult problem than that of quality assessment. Having said

that however, recent approaches to this task have demonstrated appreciable success

[17], [31], [38], [47]. The general flow of such objective assessment is to extract a series

of features that are intuitive and/or borrowed from literature on photography and/or

obtained from user studies. These features generally include low-level measures such

as exposure (luminance distribution), contrast, colorfulness, color saturation and some

ephemeral features such as the rule of thirds. In case of videos, additional motion

based features are computed as well [38], [47]. Once these features are extracted from

the stimulus, one can perform a regression onto subjective scores from datasets. How-

ever, as Datta et. al. point out, the subjectivity of the task makes such regression

perform below par [18]. Hence, the current approach seems to be classifying stimuli
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into ‘good’ or ‘bad’ aesthetics. Even though this area has seen some progress, there are

many avenues that need to be explored.

Currently, databases for image appeal have not been explicitly created and no

large scale subjective study (such as [70]) has been conducted for image appeal. An

exception is the one in [62], though no algorithmic assessment is performed there;

further the database is not publicly available. The databases that are used for image

appeal consist of images download from popular photo sharing websites such a Flickr

or Photo.net [18]. Apart from the image itself, many of the websites provide a rating

for the photo which is based on the scores given by users who have viewed the images

at their homes. Since the scores are obtained from a variety of individuals who have

viewed the image on a wide-range of (possibly uncalibrated) monitors with different

screen resolutions, viewing distances and viewing conditions, the noise associated with

these scores is very high [3]. Further, preference of a particular photographer and the

relationship of the subject to the subject of the photograph as well as the photographer

influences ratings. It is notable that most of the images that receive high aesthetic

ratings are those of female nudes. Since there is little control on the source images,

such a skew is natural. Thus, even though these datasets are large ([31] consists of a

total of ≈ 6000 images, and [17] consists of a total of ≈ 3500 images) and are available

publicly with average appeal ratings, these datasets are quite noisy.

In [18], the authors define the tasks that are of interest in the context of objective

aesthetic prediction, discuss strategies for algorithm development and describe some

datasets for performance evaluation. As the authors point out, datasets created by

crawling websites are generally used since there is ‘lack of theoretical grounding and

controlled experimental data’. Although Photo.net has an aesthetic rating scale, our

previous arguments regarding availability and noise hold for all the datasets analyzed

in [18]. The authors conclude that ‘a large, low-noise dataset based on controlled user

studies will be a welcome addition’.

It should be clear that for image aesthetics, even though there appears to be a

general agreement on the inherent subjectivity of the task and hence the prevalence

of classification as against regression/correlation analysis; there does not exist a stan-

dard, controlled dataset with subjective ratings for performance evaluation. Further,

the lack of agreed upon standard evaluation methods, such as those for IQA, implies

that different researchers utilize different methods to measure performance on different

datasets, making the task of comparing algorithms even more difficult. The reliance on

datasets compiled by crawling photo-sharing websites adds noise to the provided rat-

ings, thus rendering the ratings suspect. One important aspect of such crawled images

is image quality.

Since many of the photo sharing websites have an upper limit on the size of the

file that can be uploaded, most images on such websites have undergone compression

prior to upload. This is true not only for images from consumer digital cameras but

also those from professional SLRs which allow for images to be captured in an un-

compressed format. For example, Fig. 2 (a) shows an image from the dataset in [31]

- notice blocking artifacts which are visible at the top-left of the image. Compression

at any stage of the image processing pipeline can cause distortion, and there are other

image transformations that can introduce distortions altering the quality of the im-

age, including those from the acquisition process. It is obvious that such variations

in quality will affect subjective ratings. Further, the crawled datasets consist of ar-

tificially created images, computer-generated effects, images with artificially inserted

borders or even those that have been heavily processed after acquisition - see Fig. 2
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(a) (b)

(c) (d)

Fig. 2 Images with high aesthetic appeal: (a) compression artifacts, (b) computer-generated
effects, (c) presence of border and (d) post-processed

(b)-(d) (images from the dataset in [17]). Some may argue that a good aesthetic pre-

diction/classification algorithm must be able to predict the subjective appeal of such

images as well; however, owing to the nascence of the field and the highly subjective

nature of the task at hand, we believe that we must first endeavor to create algorithms

that seek to predict the aesthetics of natural images, and once that problem has been

surmounted, tasks of additional complexity may be added. This is due to the fact

that natural images possess certain statistical regularities which may be modeled, thus

making this seemingly insurmountable problem better-defined.

Finally, we note that the area of video aesthetics has seen little research and includes

only the approaches in [38] and [47]. In [38], videos from YouTube were utilized for the

study, and it is unclear how subjective ratings were obtained. In [47], the authors list

the drawbacks of the approach in [38] and conduct a subjective study in a controlled

environment to gauge subjective opinion on video aesthetics. Even though the proposed

database in small in comparison with those for images and that proposed in [38] or

[17], the approach in [47] represents the first systematic attempt in trying to gauge

subjective opinion on video aesthetics.

Now that the reader has a taste for how quality assessment and aesthetics assess-

ment is conducted, we would like to draw the reader’s attention to an important aspect

of subjective assessment which we have conveniently glossed over - the content of the

visual stimuli. Currently, all controlled approaches at gauging quality or aesthetics

require the user to simply rate the quality or the aesthetics of the stimulus without
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(a) (b)

Fig. 3 Images with ‘bad’ aesthetic rating from [31]: (a)it is unclear if the poor aesthetic rating
is influenced by the content and (b) it is unclear if the poor rating corresponds to poor quality
or poor aesthetics

considering the actual stimulus content. Clearly, content of the stimulus will play an

important role in the received ratings, and recently researchers have started to evaluate

the effect of content on such subjective ratings [33]. However, a lot is left to be done.

Although the three categories for measurement of stimulus appeal (quality, aesthet-

ics and content) could be disambiguated to some degree in theory, such disambiguation

is lost when the user is asked to rate only one aspect of image appeal during the cre-

ation of databases to measure quality or aesthetics or content. In order to provide

for accurate measurement of algorithm performance, it is clear that ratings from the

subject that are used to measure correlation/classification accuracy must be primarily

about the variable being assessed. We realize that completely disjoint ratings can never

be obtained from human observers, however, a simple technique can be used in order

to reduce the ambiguity.

We propose that future human studies for visual appeal should allow for ratings

on all the three scales - quality, aesthetics and content. Even though the final goal

of the researcher may be quality assessment and not aesthetics assessment, such clear

definition of the three aspects of visual appeal during the course of the subjective study

will provide reliable ratings for each category. For example, Fig. 3 (a) shows an image

from the database in [31], which is rated as aesthetically ‘bad’ by human observers.

It is unclear if the rating is due to the nature of the content or truly because of the

aesthetics. Fig. 3 (b) shows an image with bad aesthetics from [31], again, the image

is of poor quality3, and it is unclear if the subjective rating provided is for the quality

or for the aesthetic appeal of the image. The proposed setup which requires ratings on

all three scales will help to reduce such ambiguities.

As an example, consider Fig. 4 (a) which shows an image which may be considered

to have high aesthetic rating, Fig.4 (b) is a noisy version of the same image - this image

still should have high aesthetic rating, but a poor quality rating. In both these images,

the content is simply a shack in the middle of a plain - for one of the authors of this

chapter, this represents poor content; on the other hand, another author is interested

in architecture and considers the content to be good. Now consider Fig. 5 (a) - not

only does this image may have poor aesthetic value, but is also of poor quality (due

to blur); however for the owner of the dog, the content may be perceived as being

3 We define blurry images as those with poor quality, however blur can also be associated
with positive aesthetics, such as an image of a softened, wrinkle-free face - future work needs
to disambiguate such cases.
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(a) (b)

Fig. 4 (a) An image with high aesthetic appeal and good quality. (b) The same image with
high appeal but with poor quality.

(a) (b)

Fig. 5 (a) An image with poor aesthetics and poor quality, but possibly good content (for
the dog owner for example). (b) An image with high aesthetic, quality and (possibly) content
rating.

good. Finally, Fig. 5 (b) shows an image which for a majority of us has high aesthetic,

quality and content value. Thus, utilizing the proposed 3-scale approach for visual

appeal assessment - no matter what the goal of the algorithm may be - will allow for

clear and relatively unambiguous rating for each of the three categories.

In the future, for all the three categories - quality, aesthetics, content - the goal

of the algorithm should be to predict the subjective opinion score rather than binary

classification. Such prediction will allow for systematic performance evaluation using

techniques such as SROCC, LCC, RMSE and so on. Due to the highly subjective nature

of visual content assessment, one could imagine algorithms that are personalized, in the

sense that the algorithmic scores are valid for each subject individually. As the authors

in [18] note, such personalization - either at the individual level, or at the clique level

will be of interest for visual aesthetic assessment as well. Quality assessment may also

benefit from such personalization - albeit to a lesser degree. Finally, even if the source

images are compressed in nature (for example those obtained from photo-sharing sites),

the subject now has the liberty to provide a high aesthetic rating to an image with

poor quality (due to blocking, for example).

A large scale human study undertaken as described above will prove extremely

useful to researchers who seek to develop algorithms to predict visual appeal. We

believe that there is a dearth of work in the area of aesthetics and content influence on

subjective ratings, and one important research problem would be objective prediction

of visual appeal - where appeal includes quality, content and aesthetics.



15

5 Other Directions

Hopefully, by now, we have convinced the reader that the field of QA is vast and there

exist a plethora of research opportunities - images, videos, 3D stimuli, art, aesthetics

etc. We have tried to incorporate as many diverse fields as we could, however, as always

there are many topics that we have failed to analyze in detail. Our discussion has mainly

focused on areas which have received sizeable interest in recent times. In this section,

we quickly skim over some of the topics that we failed to cover in details, but believe

are relevant. This is an opportune moment to point out that this list is by no means

comprehensive, indeed, it is not meant to be.

Advancing technologies have made high-definition (HD) televisions affordable, and

in today’s market HDTVs are a dime-a-dozen. Given their rising popularity and ac-

ceptance, it is no wonder that HD content is growing by the day as well. With the

capability to now stream HD videos over the Internet onto HD-compatible displays

at home or on the move, we come back to the bandwidth-quality compromise. Enter

visual quality assessment algorithms. The case of large-screen displays is especially

interesting due to its practical relevance and increasing bandwidth costs. Deciphering

human attentional mechanisms would play an important role in HD quality assess-

ment. Recently, this area has received some attention [10], however, a lot more needs

to be done. Understanding user opinions on quality and user expectation is an impor-

tant step in this process [32]. Utilizing the information from such studies in developing

quality assessment algorithms remains of interest.

Another area that has received little attention is quality assessment in immersive

environments - panoramic 3D displays, immersive dome-displays and so on. When

a user is completely immersed in the audio-visual environment, judging the quality

of the stimulus as well as the quality of experience will be a challenging task. The

perceptual challenges in this case are similar to those in 3D QA/QoE assessment, where

the algorithm needs to re-create the experienced environment. When one adds other

modalities, such as auditory cues, tactile inputs, etc., the problem becomes gargantuan

in complexity and hence tremendously attractive for researchers!

Moving away from large screen displays and immersive environments, the other end

of the spectrum accommodates an increasingly important market - that of handheld

devices. With the recent spurt in demand for smartphones, tablets and other handheld

devices and improving wireless content-delivery channels, entertainment on-the-go is

currently a commercial hotbed. With users demanding high quality entertainment and

service providers crippled by the increasing amount of dataflow4, maximizing quality

of experience while bounded by bandwidth is an increasing relevant area. Development

of QA algorithms for mobile devices is hence of significance, with recent in-roads being

made in this field as well [89]. QA on mobile devices becomes even more interesting

given the fact that, in the near future 3D on handheld devices will cease to simply

be a possibility 5. As one would imagine, the challenges associated with this field are

numerous and include viewing distance, viewing angles, viewing conditions and so on.

Predicting quality and quality of experience in these cases will surely be a challenging

task.

4 Indeed, AT&T recently announced a cap on the bandwidth that users could utilize on
their 3G-enabled phones, and other service providers may follow suit [19].

5 Recently Nintendo announced the Nintendo DS 3D gaming device, which utilizes an au-
tostereoscopic display [54].
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5.1 Multimodal Quality Assessment

In this writeup, we have extensively discussed visual quality assessment. This is par-

tially due to the fact that our research interests lie this area. However, in terms of

providing automated quality of experience indicies, which can be used for quality con-

trol or efficient compression, we have neglected an extremely important dimension -

that of sound. In the case of videos, a wholesome experience involves not only the vi-

suals but also the accompanying audio. Wholistic quality of experience measures must

hence take into account the audio-visual quality of the stimulus; and this audio-visual

quality is referred to as multimodal or multimedia quality assessment.

Multimodal quality assessment is not an easy problem to solve, since interaction

between the visual and audio cues need to be understood in order to predict quality

of experience. Currently, there seems to be a small body of work in this area of multi-

modal quality assessment [6]. It is our belief that as visual quality assessment measures

improve, the area of multimedia quality assessment will capture the imagination of re-

searchers. Assessing the quality of the audio alone has been of interest, with some

researchers applying successful IQA algorithms for this purpose [28]. Once accurate

measures of audio quality are developed, the combination of visual and audio quality

measures will be an interesting avenue for research. Quality of experience may also

involve measuring synchronization between the audio and video streams and modeling

the effect that delays have on audio-visual perception.

6 Conclusion

In this paper we attempted to paint a picture of tomorrow for researchers in the area of

quality assessment of visual stimuli. We described our views on current research in the

area of image and video quality assessment and chiseled a rough road toward what we

believe will make for good research in the near future. Our general philosophy through

this writeup has been that of cautious optimism - we believe that a lot more needs to

be done in the area of quality assessment and that each of the subfields described here

(as well as those that were not) have great potential for growth. Our stance through

the writeup has been that algorithmic quality assessment will heavily benefit from

research in visual psychophysics. As we understand the human visual system better,

quality assessment algorithms that incorporate these mechanisms will surely result in

better performance.

Apart from quality assessment, we touched upon some esoteric topics such as aes-

thetics assessment and the effect that scene content can have on user opinion. The

currently popular 3D quality assessment arena was explored as well. Finally, we had

some opinions on how multi-modal (multimedia) quality assessment research would

progress in the near future.

A famous African proverb goes ‘Tomorrow belongs to the people who prepare for

it today’ and we hope that by setting our view of the future in print we have at least

started preparing for this journey and that we have given the reader an idea of what

the future of quality assessment research holds.
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