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Oriented Bandpass Natural Images
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Abstract—Most prevalent statistical models of natural images charac-
terize only the univariate distributions of divisively normalized bandpass
responses or wavelet-like decompositions of them. However, the higher-
order dependencies between spatially neighboring responses are not yet
well understood. Towards filling this gap, we propose a new closed-form
spatial-oriented correlation model that captures statistical regularities
between perceptually decomposed natural image luminance samples. We
validate the new correlation model on a variety of natural images.
Experimental results demonstrate the robustness of the new correlation
model across image content. A software release that implements the new
closed-form spatial-oriented correlation model is available at [1].

Index Terms—Natural scene statistics (NSS), bivariate model, spatial-
oriented correlation model, closed-form

I. INTRODUCTION

Modeling natural scene statistics (NSS) and understanding the low-
level human vision system have come to be regarded as a dual prob-
lem [2]. NSS models have also proven to be important ingredients
towards the design of image/video processing and computer vision
algorithms [3]–[6].

A variety of natural scene statistical models have been developed
in the vision science literature, both in the spatial [7] and wavelet
domain [8]. Early on, Ruderman [7] showed that a simple non-linear
operation of local mean subtraction followed by variance divisive
normalization on natural image luminance results in a decorrelating
and Gaussianizing effect. While the statistics, i.e., marginal distribu-
tions, of natural image pixels exhibit non-Gaussian behavior, after
projection onto appropriate multi-scale spaces, e.g., using wavelet
bases [9] or 2D Gabor filter banks [8], the resulting coefficients
are found to obey regular statistical models, such as Gaussian scale
mixtures [10]. These natural scene statistical models have been
deployed in perceptual and computational image/video applications
with great success, such as image denoising and restoration [3], and
image/video quality assessment [11]–[14].

However, efforts to date have focused on the use of first-order
univariate statistical models, although there certainly exist signif-
icant dependencies between spatially neighboring bandpass image
responses, which are not yet fully understood or modeled. Some early
work has been conducted on analyzing and modeling joint/bivariate
relationships between sub-band natural image coefficients. For ex-
ample, Portilla et. al [15], [16] proposed a Markov statistical de-
scriptor for texture images using a set of parametric constraints on
pairs of complex wavelet coefficients at adjacent spatial locations,
orientations, and scales. In [17], [18], the authors found that the
coefficients of orthonormal wavelet decompositions of natural images
are fairly well-decorrelated; however, they are not independent. The
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authors also showed that the empirical joint histograms of adjacent
coefficients produce contour plots having distinct ‘bowtie’ shapes.
This was observed on coefficient pairs separated by different spatial
offsets, across adjacent scales, and at orthogonal orientations. Liu et
al. [19] measured inter- and intra-scale dependencies between image
wavelet coefficients using mutual information. In [20], Sendur et al.
considered image wavelet coefficients and their parents (at adjacent
coarser scale locations), and proposed a circularly symmetric bivariate
distribution to model their dependencies. Po et al. [21] applied a
two-dimensional contourlet transform to natural images, and exam-
ined both the marginal and joint distributions. They measured the
dependencies between image contourlet coefficients using mutual
information, and proposed a hidden Markov tree (HMT) image model
with Gaussian mixtures that can capture interlocation, interscale,
and interdirection dependencies. The authors of [22] proposed an
infinitely divisible model of generic image statistics, which presup-
poses that the environment may be subdivided into local objects
cast against an ergodic image field, while also containing regions
of very little information (e.g., blue sky). However, among all these
and other efforts to characterize the bivariate behavior of natural
image fields, none has offered a closed form quantitative model of the
bivariate correlations of bandpass natural images. If available, such a
closed-form expression could be invaluable for analyzing statistical
image behavior and for formulating easily expressed and computed
optimized solutions to a wide variety of image processing problems.

Here we make progress towards filling this gap by introducing a
new closed-form correlation model of spatially neighboring bandpass
natural image responses across sub-band orientations. We start by
analyzing bivariate joint histograms using a versatile multivariate
generalized Gaussian distribution, and propose a new exponentiated
cosine function model of spatial-oriented correlation. We statistically
validate the robustness of the new closed-form NSS model.

II. SPATIAL-ORIENTED CORRELATION NATURAL SCENE

STATISTICAL MODEL

Human vision systems (HVS) extract abundant information from
natural environments by processing visual stimuli through differ-
ent levels of decomposition and interpretation. Since we want to
learn and explore the statistical relationships that are embedded
in natural images, and how these statistics might be implicated in
visual processing and used for practical image processing, we apply
certain perceptually relevant pre-processing steps on natural image
luminance, and develop our new correlation model from the empirical
response distributions.

The basic resources on which we perform bivariate and correlation
statistical modeling are the pristine images from the popular and
widely used LIVE IQA Database [23].

A. Perceptual Decomposition

We acquire luminance by transforming pristine color images into
the perceptually relevant CIELAB color space, which is optimized
to quantify perceptual color differences and better corresponds to
human color perception than does the perceptually nonuniform RGB
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Fig. 1. Joint histograms of horizontally adjacent bandpass coefficients from a pristine image and the corresponding BGGD fits at the finest scale with different
orientations. From left column to right column: 0 (rad), 1

4
π, 1

2
π, 3

4
π, and 11

12
π. Top row: 3D illustration of bivariate histogram and BGGD fit, middle row:

2D iso-probability contour plot of histogram, and bottom row: 2D iso-probability contour plot of BGGD fit.

space [24]. Each luminance image (L*) is then transformed by the
steerable pyramid decomposition, which is an over-complete wavelet
transform that allows for increased orientation selectivity [25]. The
use of the wavelet transform is motivated by the fact that its space-
scale-orientation decomposition is similar to models of the bandpass
responses of simple cells in primary visual cortex [8], [26], [27].

After applying the multi-scale, multi-orientation decomposition, we
perform the perceptually significant process of divisive normalization
on the luminance wavelet coefficients of all of the sub-bands [18].
The divisive normalization transform (DNT) used in our work is
implemented as follows [28]:

u(xi, yi) =
w(xi, yi)√
s+ w>g wg

=
w(xi, yi)√

s+
∑
j g(xj , yj)w(xj , yj)2

(1)

where (xi, yi) are spatial coordinates, w are the wavelet coefficients,
u are the coefficients after DNT, s is a semi-saturation constant, the
weighted sum occurs over a spatial neighborhood of pixels indexed
by j at the same sub-band, and {g(xj , yj)} is a finite-extent Gaussian
weighting function.

B. Bivariate Joint Distribution Analysis

] Before introducing the new correlation model, we start by
studying the bivariate joint distribution of spatially adjacent lumi-
nance wavelet coefficients subjected to DNT, i.e., u in Eq. (1).
Specifically, we use the steerable pyramid decomposition with five
scales, indexed from 1 (finest) to 5 (coarsest), and twelve frequency-
tuning orientations (defined as the normal to a sinusoidal wave front):
0, 1

12
π, . . . , 11

12
π.

Here we mainly focus on the bivariate distributions and correla-
tions of horizontally and vertically adjacent pixels. Specifically, for
horizontally adjacent pixels, we sample pairs from locations (x, y)
and (x+1, y) in an image. Since we have observed that very similar
statistics arise from horizontally and vertically adjacent pixels, we
will only discuss the results for the horizontal case.

To model the bivariate joint histogram of spatially adjacent band-
pass responses, we utilize a multivariate generalized Gaussian distri-
bution (MGGD), which includes both the multivariate Gaussian and
Laplace distributions as special cases. The use of MGGD is motivated
by the fact that the univariate generalized Gaussian distribution has
been widely used in modeling univariate natural scene statistics [12],
[13]. MGGD is also a versatile and accurate tool for modeling multi-
dimensional image histograms [29]. The probability density function
of a multivariate generalized Gaussian distribution that we use is:

p(x;M, α, β) =
1

|M| 12
gα,β(x>M−1x) (2)

where x ∈ RN , M is an N × N symmetric scatter matrix, α and
β are scale and shape parameters, respectively, and gα,β(·) is the
density generator:

gα,β(y) =
βΓ(N

2
)

(2
1
β πα)

N
2 Γ( N

2β
)
e−

1
2
( y
α
)β (3)

where y ∈ R+. Note that when β = 0.5, Eq. (2) yields the multi-
variate Laplacian distribution, and when β = 1, Eq. (2) corresponds
to the multivariate Gaussian distribution.

We model the bivariate empirical histograms of horizontally adja-
cent sub-band coefficients in natural images as following a bivariate
generalized Gaussian distribution (BGGD), viz., using Eq. (2) with
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Fig. 2. Plots of the two BGGD model parameters and the correlation
coefficients as a function of relative orientation.

Fig. 3. Definition of the spatial orientation between adjacent pixels, where
the red boxes represent the current pixel and the blue boxes represent the
spatially adjacent pixels.

N = 2. The BGGD parameters are obtained using the maximum
likelihood estimator (MLE) algorithm described in [30].

Figure 1 shows the empirical joint distributions of horizontally
adjacent sub-band responses and their corresponding BGGD fits
on pristine image ‘building2’ from the LIVE IQA Database [23].
The bivariate joint distributions are obtained by first binning both
responses at spatially adjacent locations, for example, the responses
at location (x, y) and (x + 1, y), to form a two-dimensional grid,
then counting the number of occurrences within each grid entry,
and finally computing the height of each grid entry by normalizing
its occurrence by the sum of occurrences from all entries. As may
be seen in the three-dimensional illustrations shown in the top row,
where the blue bars represent the actual histograms and the colored
meshes represent the BGGD fits, the joint distributions of L* sub-
band responses are well modeled as bivariate generalized Gaussian.
The 2D illustrations, which depict iso-probability contour maps of
the joint distributions and the fits in the middle and bottom rows,
respectively, also demonstrate the close fits of the BGGD model. The
most important observation here is that both the shape and height of
the bivariate distributions and fits vary with the tuning orientations of
the sub-band responses. In particular, when the spatial relationship
between bandpass samples, e.g., horizontal, matches the sub-band
tuning orientation, e.g., 1

2
π, then the joint distribution becomes

peaky and extremely elliptical, meaning the horizontally adjacent
bandpass responses are highly correlated at sub-band orientation 1

2
π.

Conversely, when the spatial relationship and the sub-band tuning
orientation are orthogonal, e.g., horizontal and 0 (rad), then the joint
distribution becomes nearly a circular Gaussian, implying almost
uncorrelated sub-band responses.

To further examine this spatial orientation dependency, in Figure 2
(a) we plotted the BGGD model parameters, i.e., α and β, as a
function of relative orientation at the same scale as in Figure 1. Here
we define relative orientation as the difference between the sub-band
tuning orientation and the spatial orientation of adjacent responses.
Figure 3 demonstrates the definition of the spatial orientation between
adjacent pixels. For example, if the sub-band tuning orientation is
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Fig. 4. The exponentiated cosine function and its fit to correlation coefficients
as a function of relative orientation.

0 (rad), and the pixels are horizontally adjacent, i.e., the spatial
orientation is 1

2
π, then the corresponding relative orientation is equal

to 0 − 1
2
π = − 1

2
π. Figure 2 (a) clearly shows that there is strong

orientation dependency of both parameters. We have also studied the
behavior of the correlation coefficients of spatially adjacent responses
as a function of relative orientation. These are contained in the
scatter matrix M of the BGGD model (Eq. (2) with N = 2).
Figure 2 (b) shows the correlation coefficients between horizontally
adjacent bandpass responses as a function of relative orientation. The
horizontally adjacent bandpass responses are most correlated when
the sub-band tuning orientation aligns at 1

2
π, and become nearly

uncorrelated at orientations 0 (rad) and π, substantiating the spatial
relative orientation dependency observed in Figure 1.

C. Closed-Form Spatial-Oriented Correlation Model

Motivated by this observed regular, periodic behavior, we have
deployed an exponentiated cosine function to model the correlation
coefficients as a function of relative orientation:

ρ = f(θ1, θ2) = A

[
1 + cos (2(θ2 − θ1))

2

]γ
+ c (4)

= A [cos (θ2 − θ1)]2γ + c (5)

where ρ is the correlation coefficients between spatially adjacent
bandpass responses, θ1 and θ2 represent spatial and sub-band tuning
orientations, respectively, A is the amplitude, γ is the exponent,
and c is the offset. Note that the correlation coefficient ρ is
period-π in relative orientation and reaches maximum value when
θ2 − θ1 = kπ, k ∈ Z. Figure 4 (a) shows exemplar exponentiated
cosine curves for different sets of parameters. The exponentiated
cosine model is able to capture a wide range of periodic curves
having bell-shaped lobes of varying relative slopes. Figure 4 (b) plots
an empirical correlation coefficient curve as a function of relative
orientation and its overlaid exponentiated cosine fit for horizontally
adjacent bandpass responses, i.e., θ1 = 1

2
π. From both the curve

overlap and associated mean squared error (MSE), it is apparent that
the exponentiated cosine model fits the spatial-oriented correlations
between adjacent bandpass luminance responses extremely well.

To gain more insight into this exponentiated cosine model, we
computed the correlation coefficients between horizontally adjacent
bandpass responses as a function of sub-band tuning orientation for
all 29 pristine images in the LIVE IQA Database, and found the
corresponding exponentiated cosine model parameters, i.e., amplitude
A, exponent γ, and offset c. In Figure 5 (a), we present box plots
of the three model parameters at the finest scale across all pristine
images with whiskers expressing the 1.5 interquartile range (IQR).
Figure 5 (b) to (d) show the box plots of amplitude, exponent,
and offset obtained from all pristine images across different scales,
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TABLE I
CHI-SQUARED STATISTICAL TEST RESULTS

Scale Model Parameter γ Within-Database Validation on LIVE IQA Database Cross-Database Validation on VCL@FER Database
χ2 p-value > α = 0.05? χ2 p-value > α = 0.05?

1 1.2515 14.6661 0.1983 Yes 16.3808 0.1276 Yes
2 1.2691 8.3057 0.6857 Yes 16.0024 0.1410 Yes
3 1.1846 16.4710 0.1245 Yes 18.0470 0.0805 Yes
4 1.1491 16.1336 0.1362 Yes 14.8301 0.1904 Yes
5 1.1759 9.9386 0.5359 Yes 12.3717 0.3364 Yes
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Fig. 5. Box plots of the exponentiated cosine model parameters.

respectively. Clearly, both the amplitude and offset parameters hold
fairly consistent values across image content and scales, i.e., A ≈ 0.9
and c ≈ 0.05, while the exponent parameter varies roughly within
the range of [1, 1.4], in agreement with the scale-invariant property
of natural images [31]. Indeed, little is lost and simplicity gained by
taking A = 1 and c = 0, wherein a succinct one-parameter model
may be arrived at:

ρ = f(θ1, θ2; γ) = [cos(θ2 − θ1)]2γ (6)

In each of (5)–(6), the model parameters were estimated with non-
linear least squares using the Levenberg-Marquardt algorithm [32].

III. VALIDATION OF THE EXPONENTIATED COSINE MODEL

To validate the robustness of the new spatial-oriented correlation
model (Eq. (6)), we performed a statistical hypothesis test on the
29 pristine images in the LIVE IQA Database and the 23 pristine
images in the VCL@FER Database [33]. In particular, we used a
chi-squared statistical test for goodness of fit. First, we computed the
exponentiated cosine model parameter γ at each scale by fitting the
mean correlation coefficients between horizontally adjacent bandpass
responses as a function of sub-band tuning orientation for all LIVE
pristine images. Then, we obtained the corresponding exponentiated
cosine function, i.e., ργ ∈ RD where D is the number of sub-
band tuning orientations, using Eq (6). Finally, we computed the
chi-squared statistic χ2 to determine whether the null hypothesis H0

is supported, i.e., that the correlation coefficients as a function of sub-
band tuning orientation are drawn from a population with mean equal

to ργ . Specifically, if H0 is rejected, it means that the exponentiated
cosine function is not a statistically robust model for natural spatial-
oriented correlations; otherwise, we can conclude that the spatial-
oriented correlations of all LIVE pristine images can be statistically
represented by the exponentiated cosine model ργ . The chi-squared
statistic χ2 is computed as:

χ2 =

N∑
i=1

D∑
j=1

(ρij − ργj )2

ργj
(7)

where {ργj} = ργ ∈ RD is the model, {ρij} = ρi ∈ RD are the
correlation coefficients as a function of sub-band tuning orientation
for the i-th pristine image, and N is the number of pristine images.
We also performed a chi-squared statistical test of the exponential co-
sine model derived from the LIVE IQA Database on the VCL@FER
Database, where {ρij} = ρi ∈ RD are the correlation coefficients for
the i-th pristine image in the VCL@FER Database. We repeated this
procedure to perform chi-squared statistical tests on all five scales,
from 1 (finest) to 5 (coarsest). The test results for both the within-
and cross-database validations are summarized in Table I. We can
see that the p-values for all five scales are larger than a significance
level α = 0.05, indicating that the new spatial-oriented exponentiated
cosine correlation model holds well for the tested natural images. We
also performed the same chi-squared statistical test of the exponential
cosine model derived from the VCL@FER Database, and both the
within- and cross-database (on the LIVE IQA Database) validations
show similar results, which are not included in this paper due to
the page limit. Interested readers may refer to [34]. In addition, the
model parameter γ estimated for each scale varies slightly around
1.2, which supports the box plot of γ in Figure 5 (c).

IV. CONCLUSION

We have proposed a new closed-form natural scene statistical
model that express the correlations between spatially neighboring
bandpass responses of natural images across sub-band orientations.
The new model was statistically validated as able to model the
relative spatial-oriented correlations of natural luminance images.
More importantly, our model is perceptually relevant to models of
visual processing in human vision systems (HVS), and nearly iden-
tical results can be attained using different color space conversions,
e.g., YUV, or scale-orientation decompositions, e.g., Gabor [26]. We
believe that the new correlation model will prove useful in a broad
spectrum of image and video processing algorithms. For example,
both the bivariate GGD and the exponentiated cosine models are
closed-form, and can be readily used to develop analytic optimization
solutions for image denoising, restoration, and enhancement.
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