
Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

Learning quality assessment of retargeted images

Bo Yana,⁎,1, Bahetiyaer Barea, Ke Lia, Jun Lia, Alan C. Bovikb,1

a School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
b Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-1084, USA

A R T I C L E I N F O

Keywords:
Image retargeting
Machine learning
RBF neural network
CW-SSIM
SIFT
Image aesthetics

A B S T R A C T

Content-aware image resizing (or image retargeting) enables images to be fit to different display devices having
different aspect ratios while preserving salient image content. There are many approaches to retargeting,
although no “best” method has been agreed upon. Therefore, finding ways to assess the quality of image
retargeting has become a prominent challenge. Traditional image quality assessment methods are not directly
applicable to image retargeting because the retargeted image size is not same as the original one. In this paper,
we propose an open framework for image retargeting quality assessment, where the quality prediction engine is
a trained Radial Basis Function (RBF) neural network. Broadly, our approach is motivated by the observation
that no single method can be expected to perform well on all types of content. We train the network on ten
perceptually relevant features, including a saliency-weighted, SIFT-directed complex wavelet structural
similarity (CW-SSIM) index, and a new image aesthetics evaluation method. These two features and eight
other features are used by the neural network to learn to assess the quality of retargeted images. The accuracy of
the new model is extensively verified by simulations.

1. Introduction

As the dimensions and sizes of display devices on mobile phones and
tablets continues to diversify, image retargeting has become an
important way to adjust original images to fit user-defined resolutions
while simultaneously preserving important relationships between ob-
jects and picture content. The general idea is to shrink image regions of
less importance while causing as little salient change as possible [1].

Recent image retargeting methods can be classified into two main
types: discrete and continuous methods. Discrete methods including
seam carving [2,3] and shift map [4], which remove and shift pixels of
an image. Continuous methods including scale-and-stretch [5] and
warping [6], which are processed on a quad mesh and merge pixels of
an image. Other types of approaches, such as [7], apply a sequence of
operators such as seam carving, scaling and cropping, objectively
optimizing each step of the process. Given the rapid growth and use
of automatic image retargeting techniques, it is becoming more
necessary to also develop methods to automatically ensure the high
quality of the resulting retargeted images.

If the perceptual quality of an image is high, then the retargeted
image should also be obtained with good quality. Thus a perceptual
evaluation process is needed to aid image retargeting. While human
subjective judgments of images, including retargeted images, are the

most reliable assessment, these are time consuming and difficult to
obtain. Although highly effective image quality models exist [8–11],
they require considerable modification to be able to be applied to assess
the quality of retargeted images. This motivates the development of
special-purpose objective retargeted image assessment models.

In [12], Rubinstein et al. conducted a large scale subjective study to
compare eight state-of-the-art retargeting algorithms. They made
algorithm comparisons against a variety of objective distance metrics,
including a color layout descriptor, bidirectional warping and an edge
histogram, to assess the quality of retargeted images. The authors of
[13] also built a subject image retargeting database that includes 171
images produced by several representative retargeting methods on 57
natural source image contents. Each image has a mean opinion score
(MOS) drawn from the subjective ratings of at least 30 viewers.

The authors of [14] measured global geometric structures and local
pixel correspondences to evaluate the visual quality of retargeted
images, using an objective metric. The method is top-down, organizing
the features from global to local scales. The method proposed in [15]
creates a SSIM [8] quality map that indicates, at each spatial location of
the reference image, how well the structural information is preserved in
a corresponding retargeted image. A saliency map is generated to
spatially weight a computed SSIM map to estimate the visual quality of
a retargeted image. In [16], three factors predictive of human judge-
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ments of the visual quality experienced when viewing retargeted
images were analyzed. In [17], Hsu et al. proposed a full-reference
objective metric for assessing the visual quality of a retargeted image,
based on measurements of perceptual geometric distortion and infor-
mation loss. This method is highly predictive of the subject quality of
retargeted images, but when it is applied on images containing
redundant, repeated texture patterns or very smooth areas, the SIFT
flow [18] algorithm used to establish correspondences between the
original and retargeted images may fail. In [19], Zhang et al. developed
an aspect ratio similarity (ARS) metric to evaluate the visual quality of
retargeted images by measuring local block changes. This method
achieved state-of-the-art performance on two image retargeting quality
assessment databases. Although many approaches have been devised
for assessing the quality of retargeted images, no single method has
achieved good results on the database in [12]. Given the generality and
complexity of the problem, modern machine learning based methods
offer a possible way to achieve acceptable performance [20].

The aesthetic value of a retargeted image is also relevant to image
retargeting quality assessment. In [21], Tong et al. developed a method
of image classification to identify whether photos were professional or
amateur snapshots. They deployed a large set of heuristic low-level
features. In [22], Murray et al. built a large scale database to assist with
the development of aesthetic visual analysis models, called AVA. It
contains more than 250,000 images, each supplied with a subjective
aesthetic score and a semantic label from over 60 categories. The
authors of [23–25] designed perceptual features which they used to
create predictive algorithms for image aesthetics assessment. Ke et al.
[23] proposed a principled method based on high level semantic
features to determine perceptual aesthetic differences. Datta et al.
[24] extracted 56 attributes from photos which they used to train an
SVM classifier to classify the photos into two categories. They obtained
an accuracy of approximately 70%. Cerosaletti and Loui [25] designed
a few image features for image aesthetics prediction which they
demonstrate on 450 photos. Jiang et al. [26] used the same data to
train and verify their model. Many existing techniques for image
aesthetics evaluation seek to classify photos into only two classes.
Certainly, since retargeting affects image aesthetics as well as (distor-
tion related) quality, it is of great interest to find ways to automatically
assign aesthetics scores to retargeted images. The relationships between
quality assessment and aesthetics evaluation on retargeted images is
also potentially quite interesting. In [27], Liang et al. used aesthetics
evaluation as part of a method of quality assessment on retargeted
images. Only two aesthetic features were used: one descriptive of the
rule of thirds, and the other of visual balance. However, many other
aesthetics features have been developed that could be used in this
application.

Here we describe an open framework for image retargeting quality
assessment that builds on several existing quality related features, a
novel aesthetics evaluation method, and a new saliency weighted CW-
SSIM feature. We use these features to train a radial basis function
(RBF) neural network to predict retargeted image quality. Ten of the
features used as input to the neural network are the scalar outputs of
independent image retargeting quality assessment methods. The ex-
perimental results show that the integrated method outperforms all of
these ten methods.

The main contributions of our work are: i) We propose an open
framework for image retargeting quality assessment; ii) that embodies a
novel image retargeting quality assessment model which combines CW-
SSIM [28], SIFT [29] and image saliency [30]; iii) and that also
embodies a novel no-reference image aesthetics quality assessment
method designed for retargeted images.

The rest of the paper is organized as follows. In Section 2, ten
features are introduced including two important new ones, a saliency-
weighted, SIFT-directed CW-SSIM feature and an integrated aesthetics
feature. The radial basis function (RBF) network and the training
process are described in Section 3. In Section 4, we present experi-

mental results. The training and testing data are presented and the
results of our integrated method are demonstrated and compared with
existing retargeting assessment approaches. Finally, we draw conclu-
sions in Section 5.

2. Quality-aware retargeting features

The success of any quality assessment model depends heavily on the
features being used. Here we describe two new and effective features: a
method of applying CW-SSIM to retargeted images by a SIFT-directed
mapping process, which weights the CW-SSIM values using a saliency
model, and a new method of evaluating aesthetics of retargeted images.
We also briefly summarize the other eight existing retargeting assess-
ment features.

2.1. Saliency-weighted, SIFT-directed CW-SSIM feature

SSIM is a classic method of measuring the perceptual similarity
between two images which greatly improves upon traditional methods
such as PSNR and MSE. The CW-SSIM index [28] is an application of
the SSIM method in the complex wavelet domain. Thus, it is a version of
SSIM that accords with cortical models of processing [31].

An advantage of the CW-SSIM index is that it possesses a useful
degree of shift-invariance. However, CW-SSIM requires the ostensibly
distorted image to have the same resolution as the original image,
hence CW-SSIM cannot be implemented directly for image retargeting
assessment. To handle this problem, we deploy the scale invariant
feature transform (SIFT) to aid the CW-SSIM algorithm to find matching
elements between images of possibly different resolutions. This sal-
iency-weighted, SIFT-directed CW-SSIM feature builds upon the ideas
in [15], by using sparse SIFT matching and to drive a shift-robust CW-
SSIM index.

Given an original image and a distorted image, two scale spaces SP
(Ioriginal) and SP(Iretarget) are constructed. Using the local extrema
detection method in [29], key points are detected on each image: the
images are convolved with Gaussian filters at different scales, and the
differences of successive Gaussian-blurred images are taken. Key points
are defined as the maxima/minima of these bandpass differences of
Gaussians over multiple scales. Key points which have low contrast or
that are poorly localized on an edge [29] are rejected. Each key point is
assigned one or more orientations based on the local image gradient
histogram.

The key points in the original image and the retargeted image are
subjected to a matching process. An example of the matching process is
illustrated in Fig. 1. Assuming there are nPair matched pairs of key
points [29], then define a simplified, non-weighted similarity metric:

∑Sim I I
nPair

CWSSIM p p( , ) = 1 ( , ′ ),non w ori ret
i

nPair

i i−
=1 (1)

where pi is a key point in the original image and p′i is a corresponding
key point in the retargeted image. The CWSSIM () implementation used
here uses a 9×9 square window.

Given that the human vision system is attracted to certain “salient”
regions and salient objects, not all of the matched pixels may have the
same perceptual importance. Thus we utilize a saliency weighting
scheme to improve the SIFT directed CW-SSIM similarity algorithm just
described. We calculate the average saliency using the same 9×9
window and weight the similarity by the average saliency. We use Itti's
well-known algorithm [30] (a MATLAB implementation from http://
www.saliencytoolbox.net) to compute saliency. The saliency weight of
each window is

∑ω
n

saliency p= 1 ( ),i
p window

j
∈j i (2)

where n=81 is the number of pixels in the window. Thus define the
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saliency-weighted, SIFT-directed CW-SSIM index

∑Sim I I
nPair

ω CWSSIM p p( , ) = 1 × ( , ′ ).w ori ret
i

nPair

i i i
=1 (3)

2.2. Integrated aesthetics evaluation feature

We have also developed a novel aesthetics model for evaluating this
aspect of retargeted images. This allows us to define a unique
combination of quality assessment and aesthetics evaluation. Current
aesthetics models typically deliver only a binary judgment to identify
whether a photo is a professional or an amateur snapshot. Rather than
predicting a range of aesthetic values, our integrated method computes
and assigns an aesthetic score to a photo, thereby yielding graded
predicted judgments.

From the AVA [22], we selected 1320 images from 66 different
category (20 images for each), which provides aesthetic scores ranging
from 1 to 10 evaluated by professional photographers, and extracted 11
aesthetics features from each. We then trained the neural network to
predict aesthetic scores. The training details will be introduced in
Section 3.

Aesthetics evaluation is a complex problem with limited available
scientific evidence regarding the human sense of this broad attribute.
Hence, we began our development process by developing a large
number of potential aesthetic features. We conducted extensive testing
to determine the relative efficacies of these features in regards to their
ability to predict human subjective scores, as reported in [12]. In the
end we settled on 11 features having positive correlations with human
subjectivity. These 11 features can be divided into three types: global
features, saliency features, and facial features.

2.2.1. Global features
Luminance correlates with aesthetic value [24]. As illustrated in

Fig. 2, photos of higher average luminance often have better aesthetic
value. Hence we transform an image to be analyzed into HSV color
space and use the mean value of V to represent the global picture
luminance as the first aesthetic feature:

∑ ∑f
WH

V x y= 1 ( , ),
x

W

y

H

1
=1 =1 (4)

where W is the width of the photo, H is the height of the photo, and
V x y( , ) is the value of V at pixel (x,y).

The depth of field (DOF) is the range of distances within a scene that
appear acceptably sharp in a photograph [24]. Often, if the DOF is
narrow, objects of interest within the DOF lie in front of a blurred
background outside the DOF. If the DOF is large, as is often the case
when taking photos of landscapes, the background may be as sharp as
the subjects. Professional photographers often reduce the depth of field
(DOF) when shooting single objects by using larger aperture settings,
macro lenses, or telephoto lenses. We adopted Datta et al.'s method [24]
to detect a condition of low DOF. The low DOF aesthetic features that
we use (labeled f2 and f3) are computed only on the saturation Is and
intensity Iv channels.

The rule of thirds is a guideline which has been widely applied in
the composition of visual images [32]. For example, photographers
often seek to approximately incise a scene along two vertical and two
horizontal lines, the four intersections of which are potential locations
on which to position objects of high interest (Fig. 3). This feature is
computed on the S and V components of the image. Thus define the two
aesthetic features

Fig. 1. An example of key point matching.

Fig. 2. Average luminance correlates with aesthetic value. (a) Image with low average luminance. (b) Image with high average luminance.
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∑ ∑f
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∑ ∑f
WH

V x y= 9 ( , ).
x W
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H

5
= /3

2 /3

= /3

2 /3

(6)

2.2.2. Saliency features
We again use Itti's algorithm [30], this time to compute a saliency

value at each pixel, designating those pixels whose saliency values are
greater than 2×Th as salient pixels. Th is defined as the mean saliency
value over the entire picture. That is,

∑ ∑Th
WH

SM x y= 1 ( , ),
x

W

y

H

=1 =1 (7)

where SM x y( , ) is the saliency value at pixel (x,y).

2.2.3. Facial features
Since the human face is perhaps the most common and subjectively

significant type of object in photographs, we use several features
related to the face to complete the aesthetic image assessment process.
Specifically, we apply a face detection technique [33] based on skin
color. This method computes two x coordinates k k,1 2 and two y
coordinates k k,3 4 of the vertices of a rectangular face region A, which
has area

A k k k k| | = | − | × | − |.2 1 4 3 (8)

Faces having high saliency are more likely to be of high subjective
value, hence define

f
T x y

A
=

∑ ( , )

| |
,x y A

6
( , )∈

(9)

where T x y( , )=1 when (x,y) is a salient pixel as defined earlier, else
T x y( , )=0.

Also define S, V color space features on the face region that capture
the saturation and brightness of the face. These aesthetic features are
given by:

f
S x y

A
=

∑ ( , )

| |
,x y A

7
( , )∈

(10)

f
V x y

A
=

∑ ( , )

| |
.x y A

8
( , )∈

(11)

Also define texture features using a three-level wavelet transform
[24] on H, S, V color space:

f
w x y

A
=

∑ ( , )

| |
,x y A h

9
( , )∈

(12)

f
w x y

A
=

∑ ( , )

| |
,x y A s

10
( , )∈

(13)

f
w x y

A
=

∑ ( , )

| |
,x y A v

11
( , )∈

(14)

where wh, ws, wv are w w w{ , , }lh hl hh on H, S, V color components, where
LH, HL and HH are three bands of wavelet coefficients [24].

2.3. Other eight existing retargeting assessment features

In addition to the new CW-SSIM and aesthetics features, we also use
8 other features that have previously proven relevant for predicting
retargeted image quality. These include Fang et al.'s [15] method which
is taken as an input feature to the neural network. The other 7 features
are drawn from experiments on the RetargetMe dataset [12] and
include: Bidirectional Similarity (BDS) [34], Bidirectional Warping
(BDW) [7], SIFT flow [18], Earth Movers Distance (EMD) [35], Color
Layout Descriptor Patch Match (BDSPM) [36], Edge Histogram (EH)
[37], and Color Layout Descriptor (CL) [38].

3. RBF neural network

We learn the image retargeting assessment model using an RBF
neural network [39,40]. Artificial neural networks have a long history
of applications in image analysis [41]. Among the various flavors of
neural networks, the RBF neural network model is particularly well
suited for learning to approximate continuous or piecewise continuous
real-valued mappings, when the input dimension is sufficiently small.

The radial basis function network is an artificial neural network that
uses radial basis functions as activation functions. By training the
neural network, the output is expressed as a linear combination of
radial basis functions of the inputs. A function is a radial basis (RBF) if
its output is a non-increasing function of the distance of the input from
a given stored vector.

There are three layers in an RBF network: an input layer, a hidden
layer with a non-linear RBF activation function, and a linear output
layer. The input is modeled as a vector of real numbers so the output is
then a scalar function of the input vector and is given by:

∑φ x a ρ x c( ) = ( − ),
i

N

i i
=1 (15)

where N is the number of neurons in the hidden layer; ci is the center
vector for neuron i and ai is the weight of neuron i in the linear output
neuron. The norm is typically taken to be the Euclidean distance and
the radial basis function is commonly taken to be Gaussian:

ρ x c β x c( − ) = exp [− − ].i i
2 (16)

For a Gaussian RBF this sensitivity may be tuned by adjusting the
spread σ, where a larger spread implies less sensitivity. An RBF network
with enough hidden neurons can approximate any continuous function
with arbitrary precision.

In the training process, the following parameters are determined:

• The number of neurons in the hidden layer.
• The center vectors in the hidden layer.
• The radius of each RBF function in each dimension.
• The weights applied to the RBF function.

In order to train the RBF network, we use a two-step algorithm. In
the first step, we choose the center vectors in the hidden layer. The
centers can be randomly sampled from some sets of examples, and a
third back-propagation step is applied to tune all the parameters
[39,40].

The second step simply fits a linear model with coefficients ωi to the
hidden layer's outputs with respect to some objective function such as

Fig. 3. Rule of thirds.
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the least squares function. By choosing optimal weights, minimization
of the least squares objective function optimizes the accuracy of fit. The
object is to obtain a linear combination of the above aesthetic features.
The goal of learning is to estimate the linear weights of these features.

Since existing image retargeting databases, like [12] are insuffi-
ciently large to train deep learners on, we utilized the efficient RBF
neural network as our learning engine. We deployed RBF neural
networks to train both the aesthetics evaluation engine and the quality
assessment engine.

3.1. Training of aesthetics evaluation engine

Fig. 4 shows the flow of our aesthetics evaluation method. We
selected 1320 images from the AVA [22] as a training set, where each of
the images have associated subjective aesthetics scores ranging from 1
to 10. We trained a model to perform image aesthetics evaluation by
computing the 11 features on the 1320 images, yielding 1320×11
features fed as input to the neural network, which outputs predicted
subjective image aesthetic scores. That is

Input f=i i (17)

Output ∈ [1, 10] (18)

where Inputi is the value of the ith feature and Output is the predicted
retargeted image aesthetic score.

3.2. Training of quality assessment engine

Fig. 5 shows the framework of our proposed learning based image

retargeting quality assessment method. In this process, the input is the
above-mentioned ten features of the retargeted images processed by
different retargeting methods and the output is the quality score, which
ranges from 0 to 1. Following the training process, the trained RBF
network is able to assess the quality of retargeted images with high
accuracy. The details of training the proposed overall quality assess-
ment engine are explained in the next section.

4. Evaluation

4.1. Dataset

We conducted the following experiment to examine the validity of
our integrated model. We tested our integrated model on two bench-
mark datasets: the RetargetMe dataset [12] and the CUHK dataset [13].
In this experiment, we used the images and content in the RetargetMe
and CUHK datasets.

When using the RetargetMe dataset, we chose the 37 analysis
images for which users' votes are supplied. These images have one or
more attributes from six major attributes: Line/Edge, Face/People,
Foreground Objects, Texture, Geometric Structures and Symmetry. For
each image, eight different retargeting methods were applied, thus
every image has eight retargeted images generated by distinct methods.
These eight retargeting methods include Scaling (SCL), Cropping (CR),
Seam Carving (SC) [3], Shift-maps (SM) [4], Nonhomogeneous warping
(WARP) [6], and Streaming Video (SV) [42]. These Eight retargeting
methods were ranked by the number of votes each received. We
regarded the users' votes as the ground truth of image perceptual
quality and used normalized votes to train our neural network as well as
to validate our integrated method. The correlations between the
objective and subjective scores are measured by the Kendall's rank-
order correlation coefficient (KROCC) [43]:

KROCC n n
n n

= −
0.5 ( − 1)

c d

(19)

where n is the length of the ranking (n=8 in this dataset), nc is the
number of concordant pairs and nd is the number of discordant pairs
from all the pairs.

We also tested our method on the CUHK dataset, which includes 57
natural images, and three retargeted versions of each image. The
retargeted images were created using ten state-of-the-art retargeting
methods, including optimized seam carving and scaling (SCSL) [44],
and energy-based deformation (ENER) [45], as well as eight retargeting
methods associated with the RetargetMe dataset. Each of the 171
retargeted image in the CUHK dataset has an associated MOS score,
which was obtained by averaging the opinion scores of at least 30
human viewers.

In the CUHK dataset, four evaluation metrics have been used to
evaluate the correlations between objective quality prediction scores
and the MOS. These metrics are: Pearson's Linear Correlation
Coefficient (LCC), Spearman's rank-order correlation coefficient
(SROCC) [46], Root Mean Squared Error (RMSE) and Outlier Ratio
(OR) [47,48]. LCC is computed between MOS and the objective scores
after nonlinear regression. The nonlinear regression is the mapping
function [49]:

⎛
⎝⎜

⎞
⎠⎟f x β

e
β x β( ) = 1

2
− 1

1 +
+ + .β x β1 ( − ) 4 52 3 (20)

SROCC evaluates the prediction monotonicity of the objective scores.
RMSE evaluates the difference between MOS and the objective scores
after nonlinear regression. OR evaluates the false objective score ratio.
A false objective score is one that lies outside the interval [MOS θ− 2 ,
MOS θ+ 2 ] following nonlinear regression, where θ is the standard
deviation of the corresponding MOS values.

Fig. 4. Flow diagram of our aesthetics evaluation method.

Fig. 5. Framework of the integrated retargeted image quality evaluation engine.
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4.2. Performance on the retargetme dataset

We applied ten assessment methods to each of the retargeted images
in the RetargetMe dataset to obtain 37 × 8 × 10 assessment results. To
verify the performance of our metric and compare it to other objective
methods, we applied leave-one-out cross validation (LOOCV).
Specifically, at each iteration of LOOCV, one original image and its
eight retargeted results were used as the test set while the remaining
images were used as the training set.

In the training process, the RBF network takes the ten assessment
results on a retargeted image as input and the normalized votes of the
image as label. In this case:

IN result=i i (21)

OUT ∈ [0, 1] (22)

where resulti is the evaluation of the ith assessment method and OUT is
the predicted quality score on the image. By trained on the 36×8 sets of
data, we obtained our assessment model.

In the testing process, we used the remaining one set of data as the
test set. We evaluated each of the eight retargeted images using several
different approaches. These evaluations form the IN vector, which
indicate the assessment result of each approach to be analyzed. The RBF
neural network took these evaluations as inputs and predicted the
quality score of the remaining eight images using the model learned
from the 36 sets of data. In this process the values were weighted and
transformed in a non-linear manner and the output OUT was deter-
mined from the processed values. By computing the output of the eight
images, a ranking of the eight methods was obtained.

For each of the tested original images, both subjective and objective
rankings were compared. The KROCC was computed to measure the
level of agreement between the subjective rankings and the objective

Table 1
Performance of different methods on RetargetMe dataset.

Metric Attribute Total

Lines/Edges Faces/
People

Texture Foreground
objects

Geometric
structures

Symmetry mean std p-value

BDS 0.040 0.190 0.060 0.167 −0.004 −0.012 0.083 0.268 0.017
BDS-PM 0.054 0.162 0.083 0.167 0.062 −0.024 0.097 0.232 0.016
BDW 0.031 0.048 −0.048 0.060 0.004 0.119 0.046 0.181 0.869
EH 0.043 −0.076 −0.060 −0.079 0.103 0.298 0.004 0.334 0.641
CL −0.023 −0.181 −0.071 −0.183 −0.009 0.214 −0.068 0.301 0.384
SIFT_flow 0.097 0.252 0.119 0.218 0.085 0.071 0.145 0.262 0.031
EMD 0.220 0.262 0.107 0.226 0.237 0.500 0.251 0.272 1.00E−05
Fang et al.'s method 0.211 0.319 0.143 0.290 0.192 0.321 0.249 0.239 2.36E−07
Aesthetic evaluation value 0.117 0.190 0.095 0.242 0.174 −0.048 0.143 0.323 0.011
Saliency Weighted CW-SSIM 0.154 0.343 0.214 0.222 0.134 0.155 0.183 0.332 0.002
Liu et al.'s method 0.154 0.143 0.202 0.127 0.156 0.238 0.166 0.251 2.88E−04
Hsu et al.'s method 0.431 0.390 0.389 0.286 0.438 0.523 0.415 0.296 6.0E−10
Liang et al.'s mehod 0.351 0.271 0.304 0.381 0.415 0.548 0.399 / /
ARS 0.463 0.519 0.444 0.330 0.505 0.464 0.452 0.283 1.00E−11
Existing eight features 0.429 0.443 0.452 0.413 0.424 0.524 0.427 0.154 1.13E−18
Existing eight features+Saliency

Weighted CW-SSIM
0.497 0.467 0.488 0.444 0.478 0.512 0.471 0.157 9.73E−20

Existing eight features+Aesthetic
evaluation value

0.497 0.476 0.488 0.464 0.491 0.512 0.481 0.151 3.27E−15

Our integrated mehod 0.520 0.505 0.548 0.496 0.509 0.524 0.510 0.145 4.74E−22

Fig. 6. The KROCC score at each iteration time. We compared our integrated method with Liu et al.'s method [14], ARS [19], and other ten methods that we used as features. The X label
is the iteration time and the Y label is the KROCC score.
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rankings obtained using the different assessment methods, including
the proposed one. In both cases, higher correlation coefficient indicates
higher agreement. If the rank order is the same, the correlation
coefficient will be 1.

For each assessment method, we computed the mean and standard
deviation of the KROCC values across all test sets. Comparisons were
made between our integrated method and the other assessment
approaches. The compared methods include the ten features used in
our model (applied individually) and four state-of-the-art image
retargeting quality assessment methods: Liu et al.'s method [14], Liang
et al.'s method [27], Hsu et al.'s method [17] and ARS [19]. For better
comparison, we also computed the mean KROCC values on each subset.
The result is shown in Table 1. From this table, it may be observed that
our integrated method significantly outperformed all other objective
assessment measures. Fig. 6 plots the KROCC scores of our integrated
method and the twelve other methods at each iteration. Beyond
comparison with the ten individual features composing our model,
we also compared performance against Liu et al.'s method [14]
(implemented using Itti's saliency maps [30]) and ARS [19]. For clear

explanation, Fig. 7 plots comparisons of the KROCC scores between our
integrated method and each competing retargeting quality assessment
measure. As may be observed from these two figures, our integrated
method was able to provide more stable performance than the other
methods.

In order to further demonstrate the relevance of the new features we
have introduced, we also tested the performance of our framework
using only the eight previously existing features, against our integrated
method. The comparison is summarized in Table 1, which clearly
indicates that when the two new features are removed, the performance
drops significantly.

It should be noted that for our integrated method the average
KROCC value was around 0.5, indicating that there remains room for
significant improvement.

4.3. Performance on the CUHK dataset

We also tested our method by using LOOCV on the CUHK dataset. At
each iteration of LOOCV, one original image and its three retargeted

Fig. 7. KROCC score comparisons at each iteration time. Each sub-figure compares the KROCC score between our integrated method and a competing retargeting quality assessment
measure at each iteration time. The X label is the iteration time and the Y label is the KROCC score.
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results were used as the test set, while the remaining images are used as
the training set. We then used our trained model to predict the quality
scores on the three retargeted versions of each of the 57 source images
in this dataset; after 57 iterations, 57 quality score triples were
obtained. To evaluate performance, we calculated the mean of the
SROCC, LCC, RMSE and OR on the 171 retargeted images. We
compared our method with three state-of-the-art methods: Liu et al.'s
method [14], Hsu et al.'s method [17] and ARS [19]. The results are
shown in Table 2. From this table, it may be observed that our
integrated method significantly outperformed the three state-of-the-
art objective quality assessment methods.

5. Conclusion

We have described an open framework for image retargeting quality
assessment that uses a saliency-weighted, SIFT-directed CW-SSIM
model and an aesthetics evaluation model, that are combined with
eight existing retargeting assessment methods. These new and old
models supply features that we used to train a radial basis function
network to learn to predict the quality of retargeted images. We used
the images and subjective votes in the RetargetMe dataset to train and
test our integrated prediction model. In order to verify the cross-
database stability of our method, we also tested it on the CUHK dataset.
Promising quality prediction results are achieved using the trained
neural network. The experimental results confirm a performance leap
relative to compared state-of-the-art methods.
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