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Abstract—Most prior approaches to the problem of stereo-
scopic 3D (S3D) visual discomfort prediction (VDP) have focused
on the extraction of perceptually meaningful handcrafted features
based on models of visual perception and of natural depth
statistics. Towards advancing performance on this problem,
we have developed a deep learning based VDP model named
Deep Visual Discomfort Predictor (DeepVDP). DeepVDP uses
a convolutional neural network (CNN) to learn features that
are highly predictive of experienced visual discomfort. Since a
large amount of reference data is needed to train a CNN, we
develop a systematic way of dividing S3D image into local regions
defined as patches, and model a patch-based CNN using two
sequential training steps. Since it is very difficult to obtain human
opinions on each patch, instead a proxy ground-truth label that
is generated by an existing S3D visual discomfort prediction
algorithm called 3D-VDP is assigned to each patch. These proxy
ground-truth labels are used to conduct the first stage of training
the CNN. In the second stage, the automatically learned local
abstractions are aggregated into global features via a feature
aggregation layer. The learned features are iteratively updated
via supervised learning on subjective 3D discomfort scores, which
serve as ground-truth labels on each S3D image. The patch-
based CNN model that has been pretrained on proxy ground-
truth labels is subsequently retrained on true global subjective
scores. The global S3D visual discomfort scores predicted by the
trained DeepVDP model achieve state-of-the-art performance as
compared to previous VDP algorithms.

Index Terms—Stereoscopic 3D, visual discomfort prediction,
convolutional neural network, proxy ground-truth label

I. INTRODUCTION

Stereoscopic 3D (S3D) provides an enhanced sense of real-
ity by enabling the perception of depths on two-dimensional
displays. This is accomplished by enabling viewers to expe-
rience 3D visualizations by introducing binocular disparities
between images presented to the left and right eyes. However,
the S3D viewing experience is not always an optimal one,
and can be physically uncomfortable. One important reason
for this arises when problematic 3D input stimuli are viewed
that produce abnormal cross-coupled interactions between
the oculomotor and crystalline lens control systems, causing
sensations of visual discomfort in the viewer [1][6].
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A. Related Works and Limitations

A variety of factors have been identified that produce
feelings of visual discomfort while viewing S3D content,
including crosstalk, object compactness, keystone effects, win-
dow violations, and optical distortions, among others [2]-
[5]. However, it is widely believed that the most significant
causes of visual discomfort are neuronal and oculomotor con-
flicts arising from accommodation and vergence mismatches
(AVM), which are often associated with excessive disparities
[6]-[9].

Several visual discomfort prediction (VDP) models that are
based on estimating the effects of AVM from S3D images
have been proposed. Most of these have focused on the
extraction and pooling of perceptually relevant features, that
along with recorded subjective discomfort opinion scores, are
used to train a regressor to predict discomfort levels. Early
VDP models have focused on statistical features descriptive
of the distribution of disparities (e.g., average and variance)
[10]-[15]. More recently, advanced VDP models based on
models of human visual perception have been proposed. Jung
et al. [16] developed a saliency-based VDP model, whereby
saliency-weighted disparity and disparity gradient features
were extracted from computed disparity maps. The authors
of [17] developed a VDP model that uses a model of retinal
resolving power and basic principles of physiological optics.
By formulating expressions describing both 2D and 3D visual
bandwidths, they defined four types of discomfort features that
are predictive of two types of AVM anomalies: absences of
defocus blur and absences of differential blur. The model in [7]
was designed to extract features sensitive to interactions that
occur between the accommodation and vergence mechanisms,
the level of out-of-focus blur, and the degree of diplopia.
An algorithm was then learned which predicts their collective
effects on experienced visual discomfort.

One problem with these approaches is that the VDP models
that are created [10]-[17] rely heavily on ”handcrafted” feature
representations which, even if they capture key perceptual or
neurophysiological contributions to 3D discomfort, may yet
miss other import latent factors. Generally, it is a challenging
problem to adequately model the optical, psychophysical,
and physiological elements that are implicated in causing
discomfort. Even if the principal factors that cause visual
discomfort were revealed, it is difficult to determine how to
correctly weight and combine features representative of these
factors during the learning process, since the feature extraction,
aggregation, and regression sub-processes are functionally
independent.
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B. Motivation

Towards advancing progress on this complex problem,
we have developed a novel deep visual discomfort predic-
tor (DeepVDP) that utilizes a convolutional neural network
(CNN) [18][19]. DeepVDP accurately conducts S3D VDP by
learning features and abstractions from labelled S3D images
and disparity maps computed on them. While deep learning
has recently been applied to the image quality problem [20],
we believe that this is the first attempt to apply deep learning
methods to the VDP problem. We have designed the model
structure based on established physiological models of binoc-
ular perception, which are used in the construction of each
stage of the system.

However, generating the sufficiently massive amounts of
subjective data that is required to train a CNN without over-
fitting is very difficult in this context. Human subjective 3D
discomfort labels must be obtained in a controlled laboratory
setting and cannot be crowdsourced. Existing VDP datasets
contain insufficient amounts of subjective data to be able
to meaningfully train even a moderately deep network. For
example, the IEEE-SA database [21], which is the largest
S3D visual discomfort database, contains only 800 S3D image
pairs, which is much smaller than datasets used in typical deep
learning applications [24], [25]. Most of the data augmentation
techniques that are commonly used to surmount insufficient
data volumes, such as image rotations, cropping and vertical
flips cannot be used to overcome this problem, since the
experienced degrees of visual discomfort are likely to be
modified by most geometric transformations of an S3D image.

One appealing idea to capture more data would be to exploit
video discomfort datasets. This is highly problematic, since
the limited datasets available only supply whole-video labels
but no frame scores which are not acceptable since discom-
fort factors change over time. More importantly, even if an
S3D video discomfort database with frame-level scores were
available (there is not), it could not be used since powerful
motion-related discomfort factors (very fast or chaotic 3D
motions) would seriously bias the subjective discomfort labels.
Among the various existing augmentation schemes, we have
only found swapping the left and right images, followed by
horizontally flipping them (to preserve physically correct depth
impressions) to be useful.

C. Proposed Approach

Ground-truth label
: Subjective score for image
: 0.48 (range is [0,1])

Is the label for each patch
Equal to 0.48? ! No

Patch 1
Patch 2

Patch 3

Fig. 1. The subjective MOS is 0:48 for the S3D image “ISS7 50” in the
IEEE-SA dataset. However, the ground-truth labels for each patch should not
necessarily match the globally assigned subjective score.

We have taken a different approach to overcome the lack
of labelled S3D image data. Specifically, we have developed

Neural tuning functions
& absolute disparities

 Model 
trained

  on MOS

Extracted
features

3D-VDP

Disparity 
estimation

Disparity 
value at each 

pixel

S3D image 
pair

Predicted 
3D-VDP

score
at each pixel Average 

scores over
each patch

Assigning
proxy ground-

truth labels

Fig. 2. Proxy ground-truth labels are generated using the 3D-VDP
algorithm, and then assigned to the corresponding image patches.

a patch-based CNN model whereby each S3D image used
for training or testing is first partitioned into patches. Patch-
based learning of a VDP model is problematic, since ground-
truth labels are not available for each patch. The whole-image
subjective labels cannot be used, since global experiences of
visual discomfort are unlikely to coincide with local S3D dis-
comfort contributions. We depict this problem in Fig. 1, where
the normalized MOS of the example S3D image (“ISS7 50”
in the IEEE-SA dataset) is 0:48. However, when the image
is divided into patches, it is difficult to justify assigning the
same MOS value to every patch (e.g., patches 1–3 in Fig. 1).
The most reliable method to obtain the local level of visual
discomfort, of course, would be by collecting subjective scores
on each patch; this, however, is not a reasonable possibility
[26].

To cope with this, we introduce a new concept of learning
on proxy ground-truth patch labels which are used in lieu
of patch subjective scores. The proxy ground-truth labels are
obtained on each patch in the form of the responses of an S3D
VDP algorithm (called 3D-VDP) [8].

Fig. 2 depicts the system used to assign proxy ground-
truth labels generated by 3D-VDP to patches of a S3D image.
Generating proxy ground-truth labels for each patch consists
of three steps: training the 3D-VDP model over entire images,
predicting a 3D-VDP score at each pixel, and averaging
the predicted values over each patch. 3D-VDP is able to
capture both local and global attributes of experienced visual
discomfort by modeling the mean firing rates of a variety of
depth-sensitive cells in the middle temporal (MT) visual area.
These cells have a wide range of receptive field shapes and
sizes, hence are responsive to depth stimuli that occur over
corresponding spatial scales [8].

As we will show later, using the predicted 3D-VDP scores
as proxy ground-truth labels to pre-train the patch-based CNN
which yields a performance improvement of more than 12%,
as compared to using only raw disparity values as patch labels
(Section IV).

D. DeepVDP Learning Framework

Fig. 3 depicts the overall DeepVDP training framework,
which occurs in two consecutive steps: pre-training of the
patch-based CNN by regressing onto the proxy ground-truth
labels generated by 3D-VDP, followed by training (fine-
tuning) the pre-trained model onto the MOSs. These automati-
cally extracted local features are subsequently aggregated into
global features predictive of the degree of visual discomfort
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S3D image Pair

Fig. 3. Overall training framework of the DeepVDP model. Training step 1:
the CNN model is locally regressed onto proxy ground-truth labels. Training
step 2: the local features are aggregated and regressed onto MOS.

score experienced when viewing the S3D image. The specific
two-step training processes are implemented as follows:

1) Training step 1: Proxy ground-truth patch labels are
generated, and used to pre-train the patch-based CNN.
Since the 3D-VDP score for each patch supplies only
an approximation to ground-truth, the learning process
requires fine tuning.

2) Training step 2: On each training image, the bundle
of patch-based CNNs is trained onto the MOS, then
the learned local features are aggregated into global
features. The visual discomfort scores are predicted in a
holistic manner by bi-directionally updating the global
representations from the independently learned local
features.

The contributions that we make are summarized as follows:
� The visual discomfort predictions delivered by the Deep-

VDP model are highly correlated with subjective opinion
scores, exceeding those of prior models. By extensive
experimentation, we isolate and identify important fac-
tors that cause visual discomfort, including those related
to human attention, depth distribution, and edge and
texture orientations, amongst others. Our model is able
to automatically extract features which cause visual
discomfort.

� In order to overcome the lack of training data needed for
deep learning, we deploy a high-performance existing
VDP model to generate proxy ground-truth labels.

� A pre-training step using proxy ground-truth patch labels
is developed and is shown to lead to a significant
performance improvement.

� A process of local to global feature pooling is conducted
during training, whereby the patch-based CNN is glob-
ally optimized to predict visual discomfort.

II. PROXY GROUND-TRUTH LABEL GENERATION

A. Relevant Features Utilized by 3D-VDP

Vergence eye movements are controlled via feedback from
vision to optomotor control. There are several cortical areas
that are implicated in 3D visual perception, and there are
numerous interconnections among them [28]. Recent studies
have demonstrated that visual area MT plays a major role in
disparity processing, and that disparity selectivity in this area
is considerably stronger than in other cortical areas, including
areas V1 and V4 [28]-[32]. Occurences of AVM are induced

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 4. Examples of estimated neural responses. (a) The left image of an
S3D stereopair; (b) a computed disparity map by [31]; (c)-(o) neural response
maps using 13 neuronal models of visual area MT.

in part by forced vergence eye movements, guided by neural
activity transmitted from visual area MT. 3D-VDP models
the tuning curves of area MT neurons as Gabor functions
[30][33], using 13 typical tuning curves. In 3D-VDP, these
13 representative neurons are used to extract features, where
the fitting parameters for the tuning functions are given in [30].

As an illustrative example, Fig. 4 (a) shows the left image of
an S3D image pair, while Fig. 4 (b) shows a disparity map dmap
computed on it, where brighter pixels represent higher dispar-
ities. Figs. 4 (c)–(o) depict estimated response maps using the
13 model tuning functions, where brighter regions represent
disparity regions producing stronger responses. Further details
of 3D-VDP can be found in [26].

B. Generating Proxy Ground-Truth labels

As depicted in Fig. 2, the generation of proxy ground-truth
patch labels consists of the following three steps.

1) 3D-VDP model training: A support vector regressor
(SVR) is employed to learn the 3D-VDP model gl (�), which
is trained on global features from entire images and MOSs as
shown in Fig. 5 (a). Fig. 5 (a) also shows how the disparity
map dmap is computed from a pair of S3D images, and how
the neural responses are estimated using the aforementioned
13 tuning functions. In the 3D-VDP training step, thirteen
feature maps f 1 to f 13 are generated which, along with two
absolute disparity features, are regressed onto the discomfort
MOS using the SVR. In addition to the neuronal response
maps, 3D-VDP deploys two additional disparity features f 14
and f 15: the mean negative and positive disparities:
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(a)

(b)

Fig. 5. Framework for obtaining the 3D-VDP score of each pixel. (a)
Training: the 3D-VDP model gl (�) is trained on 15 features, including
neuronal response maps and 2 absolute disparity features. The model is
regressed onto the MOS by using an SVR. (b) Prediction: the 15 local features
are extracted at each coordinate (x; y ) that are fed into the 3D-VDP model.
The predicted proxy visual discomfort scores of the pixel are then used as
proxy ground-truth labels for each patch.

f 14 =
1

hI � wI

X

x

X

y

d� (x; y ); (1)

and

f 15 =
1

hI � wI

X

x

X

y

d+ (x; y ); (2)

where d� (x; y ) and d+ (x; y ) are the negative and positive
disparity maps and hI and wI are the number of horizontal
and vertical pixels in each image, respectively.

2) Prediction of 3D-VDP score at each pixel: Visual dis-
comfort scores are predicted by the trained model using the
features extracted at each pixel, as shown in Fig. 5 (b). Let
� l (x; y ) be the 3D-VDP score at pixel coordinate (x; y ), which
is predicted using the trained model gl :

� l (x; y ) = gl (f 1(x; y ); f 2(x; y ); :::; f 15(x; y )) ; (3)

where (x; y ) are image coordinates and f 1(x; y ); f 2(x; y ); :::;
f 15(x; y ) are features extracted at each pixel (x; y ).

3) Assigning labels to patch: The proxy ground-truth label
� p

n of the nth patch pn is obtained by averaging the 3D-VDP
scores over the patch:

� p
n =

1
hp � wp

X

x;y 2p n

� l (x; y ) (4)

where hp and wp are vertical and horizontal patch dimensions
(hp = 16 and wp = 18). The reason for choosing this patch
size is explained in Section IV.

Fig. 6. shows examples of the proxy ground-truth labels
computed on three pairs of S3D images from the IEEE-
SA database [21] (ISS7 0, ISS7 50, and ISS7 100). These

Fig. 6. Examples of obtained proxy ground-truth labels on three S3D
image pairs, IEEE-SA database stereopairs (ISS7 0, ISS7 50 and ISS7 100)
corresponding to each row. The first column contains the disparity maps
computed using [31], the second column shows the 3D-VDP score at each
pixel coded as an intensity map, and the last column represents the proxy
ground-truth patch labels obtained by averaging the 3D-VDP scores of each
patch.

three S3D image pairs were obtained from the same scene as
Fig. 4 (a), but at different disparity ranges. The first, second,
and third columns are disparity maps computed on them, the
pixelwise 3D-VDP scores, and the proxy ground-truth patch
labels, respectively. Brighter regions in the disparity maps
indicate higher disparity values. The 3D-VDP score at each
pixel was obtained using (3), where darker regions (lower
3D-VDP scores) might cause more severe visual discomfort.
The proxy ground-truth patch labels are obtained using (4),
and then they are used as labels during the DeepVDP model
regression.

3D-VDP scores have been shown to correlate well with
human visual discomfort judgments on the IEEE-SA database
[17],[21]. For example, the normalized MOS values of ISS7 0,
ISS7 50, and ISS7 100 are 0:48,0:43, and0:32, respectively.
By comparison, the mean 3D-VDP discomfort predictions
on the same images are 0:73, 0:59, and 0:25, respectively.
Although the predicted 3D-VDP scores generally differ from
the true MOS values, on average the MOS predictions are
nicely linear and monotonic with, and accurately predict true
MOS [17]. However, while errors are not unexpected, their
occurrences motivate a second step of careful fine tuning on
human scores.

III. DEEP VISUAL DISCOMFORT PREDICTOR

After generating proxy ground-truth patch scores using the
3D-VDP model, the DeepVDP model is then trained and tested
on them. Next, we define the various inputs and explain how
we train and test the DeepVDP model.

A. Input Generation

The input to the learning DeepVDP model consists of
three channels: a normalized cyclopean image, and posi-
tive and negative disparity maps. Each input image is di-
vided into non-overlapped patches of size hp � wp. Let
pcn , p �

dn and p+
dn be the nth patches from the normal-

ized cyclopean image Î c, and negative and positive dis-
parity maps d�

map and d+
map, respectively. These patches are

spatially aligned. In this way, the three-channel patch set
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(a) (b)

Fig. 7. (a) Synthesized cyclopean image of “ISS7 0” (upper image). (b)
Normalized cyclopean image (upper image). The lower images are zoomed
versions of the two images.

P =
��

pc1; p �
d1 ; p+

d1
	

:::;
�

pcN ; p �
dN ; p+

dN
		

is composed,
where N is the total number of three-channel patches. The
set P becomes the training dataset for DeepVDP. Note that
the nth patch

�
pcn ; p �

dn ; p+
dn

	
also corresponds to the proxy

ground-truth label � p
n in (4). The way of obtaining three input

channels is described in the following.
1) Cyclopean Image: A single normalized ”cyclopean im-

age” is computed from each S3D pair and used as an input
image when training or implementing DeepVDP. This mimics
the perceptual process of fusing the images from the two
eyes into a single cyclopean image [37]. We use the left-
right disparity compensated weighted combination in [38] to
synthesize the cyclopean image as:

I c(x; y ) = Wl (x; y ) � I l (x; y )+ Wr (x + d; y) � I r (x + d; y) (5)

where I l and I r are the left and right images of an S3D pair, re-
spectively, and Wl and Wr are corresponding weights applied
to them. The weights are normalized Gabor filter responses
[38]. Fig. 7 (a) shows the cyclopean image synthesized from
“ISS7 0.’’

The obtained cyclopean image is then subjected to de-
biasing (local mean subtraction) and divisive normalization
by local energy. These processes have relevance to both
neuronal modeling and to established natural scene models
[39]. Normalization can also induce improved performance of
supervised learners [40] and can reduce training time [41].
These processes have also been used to define 2D and S3D
picture quality predictors that are highly sensitive to deviations
of natural image statistics caused by distortion [42]-[45]. The
normalized cyclopean image is used as an input to DeepVDP,
since the underlying statistics of image texture relates to
stereopsis and the degree of experienced visual discomfort
[46][47]. The processes of de-biasing and normalization on
the cyclopean image I c are given by:

�(x; y ) =
KX

k=�K

LX

l =�L

wk;l I c(x + k; y + l); (6)

� (x; y ) =

vuut
KX

k=�K

LX

l =�L

wk;l [I c(x + k; y + l) � �(x; y )]2;

(7)

where w = fw k;l jk = �K; :::; L; l = �L; :::; Lg is a 2D cir-
cular symmetric Gaussian weighting function that is sampled
out to 3 standard deviations (K = L = 3 ) and rescaled

(a) (b)

Fig. 8. (a) Negative disparity map d�
map, where brighter regions are in front of

the screen. (b) Positive disparity map d+
map where brighter regions are behind

the screen.

to unit volume [42]. The preprocessed cyclopean image is
subsequently obtained as

Î c(x; y ) =
I c(x; y ) � �(x; y )

� (x; y ) + 1
; (8)

which is identical to the preprocessing used in the BRISQUE
and NIQE blind picture quality models [42][44].

Thus, a normalized image set Î c =
n

Î c1; Î c2; :::; Î cM

o
is

generated, where M represents the total number of S3D image
pairs in the training set. Fig. 7 (b) illustrates a normalized
cyclopean image. The normalized images Î c are the inputs to
DeepVDP.

2) Positive and Negative Disparity Maps: The second and
third inputs to DeepVDP are the negative and positive disparity
maps d�

map and d+
map, which are extracted from the computed

disparity map dmap:

d�
map(x; y ) = min (0; d map(x; y )) (9)

d+
map(x; y ) = max (0; d map(x; y )) :

A variety of studies have been directed towards understand-
ing the relationships between positive and negative disparities
and their different effects on experienced visual discomfort
[7][13][8][48]. While negative disparities are often regarded as
having a greater contribution to feelings of visual discomfort
than positive disparities, this is not always the case, hence
we model positive and negative disparities separately. Thus,
distinct maps d�

map and d+
map are computed to account for the

relative distributions of negative disparities (implied depths in
front of the viewing screen) and positive disparities (implied
depths behind the viewing screen). Figs. 8 (a) and 8 (b)
show examples of d�

map and d+
map, respectively. Darker regions

indicate lower disparity values that are closer to zero disparity
(screen depth).

B. Patch-based CNN Architecture

Fig. 9 illustrates the overall architecture of the patch-based
CNN. The proposed model consists of two convolutional
layers, three consecutive fully connected layers, and a fully
connected regression layer at the end. In the first and second
convolutional layers, a 5 � 5 filter is used without pooling,
and 48 and 64 kernels are used, respectively. Let g� (�) be
the feature vector extractor (R3�h p �w p ! R200), which
includes two convolutional layers and three consecutive fully
connected layers parameterized by � . In particular, the 200
feature dimensions are heuristically determined based on the
performance as a function of feature dimension. Let g� 1 (�) be
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Fig. 9. CNN-based proxy ground-truth label training. The 200-dimensional
local feature vector fn is extracted from the last hidden node (black).

the regression function (R200 ! R1) parameterized by � 1 at
the end of the network model, as illustrated in Fig. 9. Thus,
the 200-dimensional feature vector fn = ( f n; 1; f n; 2; :::; f n; 200)
is extracted by g�

��
pcn ; p+

dn ; p �
dn

	�
from the nth patch. In

each layer, a leaky rectified linear unit (LReLU) is applied as
a nonlinear activation unit with a small constant � = 0 :1 [50].
This has advantages for training while simplifying the back-
propagation process, enhancing optimization, and preventing
saturation owing to differentiation [51].

C. Training Step 1: Proxy Ground-Truth Patch Label Regres-
sion

In the first training step, the patch-based CNN is trained
onto the proxy ground-truth label to learn local abstractions
of the data. Each patch

�
pcn ; p �

dn ; p+
dn

	
is an input to the

model, the proxy ground-truth label for the nth patch � p
n is

an output to the model, and the network parameters � 1 are
optimized to minimize the loss:

� �
1 = arg min

� 1

‘ 1
��

pcn ; p �
dn ; p+

dn
	

; � p
n ; � 1

�
; (10)

where the loss function ‘ 1(�) indicates the output values
computed by the 3-channel input patch (pcn ; p �

dn ; p+
dn ) and

the two-stage feedforward network (g� 1 (�); g� (�)) , where the
loss is determined by the mean squared error (MSE) between
the network output and the proxy ground-truth patch labels:

‘ 1
��

pcn ; p �
dn ; p+

dn
	

; � p
n ; � 1 = ( �; � 1)

�
(11)

=
1

NT

N TX

n =1

�
g� 1

�
g�

��
pcn ; p �

dn ; p+
dn

	��
� � p

n
� 2 ;

where NT is the size of the training set. In order to optimize
the model parameters, stochastic gradient descent is employed
in the back-propagation process over a mini-batch B = 500,

i.e., 1
B

P B
n =1

@‘1 (f p cn ;p �
dn ;p +

dn g;� p
n ;� 1 )

@� 1
. The initialization and

optimization techniques are adopted from [52][53]. In order
to prevent falling into local minima and overfitting, batch
normalization is used in training except g� 1 , which can be
achieved through reduction of the internal covariate shift
problem [54].

D. Training Step 2: Subjective Score Regression

Each locally trained patch-based CNN model only captures
limited information descriptive of visual discomfort, since

Fig. 10. Framework of training step 2. The local features F are extracted
independently through the shared CNNs and pooled into global features �F
at the local feature aggregation layer z( �) . The model parameters are then
iteratively trained using the MOS.

TABLE I
A LIST OF VARIABLES REPRESENTING FEATURES

Variables Meaning

f n;l feature value of local patch
�f k;l pooled feature value of f n;l
�fk aggregated feature vector of an image
�F concatenated feature vector of �fk

it is supervised using the proxy ground-truth patch labels.
Therefore, the learned local features are updated to global
features representing holistic visual discomfort, following the
last hidden node (black) of each model in Fig. 9. In training
step 2, the model is trained again with the grouped patches
obtained from each input image, as illustrated in Fig. 10.
Further, the local feature aggregation layer z(�) is embedded
into the learning process. This is combined with the process of
optimizing the model parameters in the end-to-end framework.

Let Nm be the number of divided patches in
the mth S3D image. A set of feature vectors
F = ( f1; f2; :::; fN m )T is obtained from a single
S3D image by g�

�n
Î cm ; d�

map;m ; d+
map;m

o�
=

�
g�

��
pc1; p �

d1; p+
d1

	�
; :::; g�

��
pcN m ; p �

dN m
; p+

dN m

	�	

(R3� N m � hp � wp ! RN m � 200), where g� represents the
bundle of patch-based CNNs g� .

The feature aggregation layer z = f z1(�); z2(�); z3(�); z4(�)g
consists of four pooling functions (RN m ! R4). Let �F =� �fk jk = 1 ; 2; 3; 4

�
be the global feature vector obtained from

each pooling function, where �fk = ( �f k;l jl = 1 ; 2; :::; 200). The
local features of the nth patch f n;l are then pooled into �f k;l :

�f 1;l = z1 (F ) =
1

Nm

N mX

n =1

f n;l ; (12)

�f 2;l = z2 (F ) =
1

Nm

N mX

n =1

�
f n;l � �f 1;l

� 2
(13)

�f 3;l = z3 (F ) =
1

N p
m

X

n>n p +

f h
n;l ; (14)

�f 4;l = z4 (F ) =
1

N p
m

X

n<n p �

f h
n;l (15)
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where l = 1; :::; 200 indexes the features from g� . As a
result, each �fk has 200 dimensions. Here, np+ and np�

indicate the upper and lower pth percentiles in the histogram
of local features f h

n;l , respectively. N p
m represents the number

of p-percentile proxy visual discomfort scores, i.e., N p
m =

Nm � p=100. In our implementation, we setp = 10 [57].
Consequently, the concatenated form of the global feature

vector �F = ( �f1; :::; �f4) is obtained as z(�) (RN m �200 ! R800).
A list of the relevant variables is given in Table I. Subse-
quently, g� for the mth input image is regressed onto its
corresponding MOS �̂ m by minimizing the objective function:

� �
2 = arg min

� 2

‘ 2

�n
Î cm ; d�

map;m ; d+
map;m

o
; �̂ m ; � 2

�
(16)

where the loss function ‘ 2(�) in training step 2 is the MSE
between the predicted S3D visual discomfort level and the
MOS of the M T training input images:

‘ 2

�n
Î cm ; d�

map;m ; d+
map;m

o
; �̂ m ; � 2 = ( �; � 2)

�
= (17)

1
M T

M TX

m=1

�
g� 2

�
z

�
g�

�n
Î cm ; d�

map;m ; d+
map;m

o���
� �̂ m

� 2
;

where g� 2 (�) is the regression function at the end of the
model structure with parameter � 2, which predicts the visual
discomfort score of the S3D image (R800 ! R1), as illustrated
in Fig. 10.

An essential consideration is the size of the mini-batch
deployed in the stochastic gradient descent, because the pro-
posed model is a patch-based structure. Unlike training step 1,
training step 2 requires an image-based structure. Rather than
training the model over the entire image domain, to achieve
reliable local feature aggregation, the size of the mini-batch is
set to be identical to the number of patches which comprise
the mth S3D image, i.e., B = Nm . The other settings for the
model training are the same as in training step 1.

IV. EXPERIMENTAL RESULTS

A. Performance of DeepVDP

1) Dataset: To verify the performance of DeepVDP, the
IEEE-SA S3D image database was used [21]. IEEE-SA con-
sists of 800 S3D image pairs obtained using a built-in twin-
lens camera system. The size of each image is 1920� 1080.
The database is organized into eight categories encompassing
a diversity of shapes and depths, which are reasonably repre-
sentative and challenging. The IEEE-SA stereo image database
is composed of 160 convergence-sampled sets (i.e., five S3D
image pairs with different disparity ranges for each set) such
that each content category contains 20 sets. The size of the
LCD monitor used to display S3D images to subjects was
46 inches, while the design of the experimental environment
followed the standard recommendation ITU-R BT. 500-11
[22]. The MOS value of each S3D image pair falls within
the range [1;5], where a lower value represents higher visual
discomfort. Before training, we normalized the MOS to the
range [�1; 1].

To validate the generality of the model, we also used the
IVY LAB S3D image database [23], which is composed of

TABLE II
LCC AND SROCC COMPARISON ON THE IEEE-SA VDP DATABASE.

VDP model LCC SROCC RMSE
Yano et al. [10] 0.4030 0.3361 0.7654
Nojiri et al. [13] 0.6938 0.6063 0.5923
Choi et al. [14] 0.6732 0.5866 0.6102
Kim et al. [15] 0.7040 0.6172 0.5579
Park et al. [17] 0.8524 0.7785 0.4247
Park et al. [8] 0.8505 0.7784 0.4234
Oh et al. [7] 0.8590 0.7887 0.4108
DeepVDP 0.8849 0.8164 0.3631

TABLE III
LCC AND SROCC COMPARISON ON THE IVY LAB VDP DATABASE.

VDP model LCC SROCC RMSE
Yano et al. [10] 0.4105 0.3458 0.7414
Nojiri et al. [13] 0.7025 0.6127 0.5897
Choi et al. [14] 0.6821 0.5977 0.5922
Kim et al. [15] 0.7110 0.6246 0.5313
Park et al. [17] 0.8623 0.7813 0.4121
Park et al. [8] 0.8614 0.7872 0.4130
Oh et al. [7] 0.8653 0.7925 0.4052
DeepVDP 0.8885 0.8254 0.3612

120 real scenes captured using a 3D digital camera with dual
lenses. The IVY LAB database consists of various categories
of images of resolution 1920� 1080 pixels, including both
indoor and outdoor scenes containing various objects (humans,
trees, buildings, man-made objects, etc.). The size of the LCD
monitor used in the IVY study was 40 inches, while the
experimental design also followed ITU-R BT. 500-11 [22].
The MOS value of each IVY S3D image pair falls in the
range [1;5], which we also normalized to [�1; 1].

2) Performance Measurement: Well-known performance
measurements were utilized to benchmark DeepVDP against
the performances of previous S3D VDP models: the Pear-
son linear correlation coefficient (LCC), Spearman rank-order
correlation coefficient (SROCC) and root mean square er-
ror (RMSE). The LCC and SROCC measure the degree of
linearity and monotonicity between the predicted discomfort
scores and the ground-truth scores. The RMSE measures the
accuracy (average distance) between the predicted scores and
the MOS. The same 80% of the IEEE-SA and IVY LAB
databases were randomly selected for both training steps 1
and 2, while the remaining 20% of the dataset was used for
testing. Each correlation coefficient is an average of values
obtained over 50 training and testing iterations. To increase
the size of the training set in step 2, we swapped the left and
right images after left-right flipping each S3D image. This
process maintains the same depth distribution as the original
stereopair, where it is reasonably assumed that the flipped
stereopair is associated with the same MOS as the original
stereopair. We compared the predictions of the proposed model
against those of prior seven VDP models developed by Yano
et al. [10], Nojiri et al. [13], Choi et al. [14], Kim et al. [15],
Park et al. [17], Park et al. [8], Oh et al. [7]. Tables II and
III compare the LCC and SROCC of these VDP models on
the IEEE-SA and IVY LAB databases, respectively. Clearly,
DeepVDP delivers improved predictive performance compared
to the other models in terms of both linear accuracy and
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Fig. 11. Results of the t-test on the LCC values from the (a) IEEE-SA and
(b) IVY LAB VDP databases.
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Fig. 12. Variation of training loss in (a), and LCC in (b) for each percentage
of the training set as a function of the number of epochs in step 2.

monotonicity.
Also, we conducted a t-test simulation on the LCC values

(over 50 trials) of all pairs of prediction models. The t-test is
performed in this context to determine whether the superiority
of the performance of one model over another is statistically
significant. The results of the t-tests on the IEEE-SA and
IVY LAB databases are illustrated in Fig. 11. The symbols
”1”, ”0” and ”-1” indicate that the performance of the model
in the row is statistically better, indistinguishable or worse,
respectively, than the competitor in the column. We fixed
the significance level at p=5% in the comparisons. However,
when there were multiple comparisons involving more than
three models, to decrease type I errors, we applied Bonferroni
correction [58], yielding a significance level p=

� 6
2

�
= 0:417%.

On the IEEE-SA and IVY LAB VDP databases, the DeepVDP
model provided to be statistically better than all of the other
VDP models.

Additionally, to study the dependency of the performance
of DeepVDP on the relative proportion of samples between
the training and test sets, we measured the training loss
and LCC when training on four different percentages of the
overall dataset (20%, 40%, 60%, and 80%) on the IEEE-SA
database. Furthermore, we also observed these values against
the number of epochs (1–200) to verify whether the training
loss properly converged without the gradient diverging, and
to analyze the trend of the performance improvement. Figs.
12 (a) and 12 (b) show the variation of training loss and
LCC as a function of the percentage of the dataset that was
trained on. The training loss rapidly decreased during the
early iterations, which demonstrates that the initial values of
the model parameters were reliably being optimized onto the
MOS. When 80% of the dataset was used for model training,
the training loss rapidly converged until the 15th epoch. The

TABLE IV
LCC AND SROCC COMPARISON ON THE EPFL DATABASE, WHERE THE

PREDICTION MODEL WAS TRAINED USING THE IEEE-SA DATABASE.

VDP model LCC SROCC RMSE
Choi et al. [14] 0.7731 0.8231 0.4539

Kim and Sohn [15] 0.8693 0.8720 0.4296
Park et al. [17] 0.8893 0.8902 0.3925
Park et al. [8] 0.8882 0.8896 0.3892
Oh et al. [7] 0.8864 0.8812 0.3934
DeepVDP 0.9102 0.9154 0.3613

TABLE V
LCC AND SROCC COMPARISON ON THE EPFL DATABASE, WHERE THE

PREDICTION MODEL WAS TRAINED USING THE IVY LAB DATABASE.

VDP model LCC SROCC RMSE
Choi et al. [14] 0.7528 0.8012 0.4721

Kim and Sohn [15] 0.8471 0.8503 0.4378
Park et al. [17] 0.8562 0.8617 0.4202
Park et al. [8] 0.8530 0.8609 0.4198
Oh et al. [7] 0.8591 0.8631 0.4177
DeepVDP 0.8782 0.8876 0.3934

accuracy then stabilized to a correlation of approximately 88%
against MOS around the 180th epoch, as shown in Fig. 12
(b). When 60%of the dataset was trained on, the convergence
was slightly slower. During the early stages, the LCC score
obtained using 60% of the dataset for training was higher
than when 80% of the dataset was used for training; however,
the performance of the model improved very little after 40
epochs. Nevertheless, the performance of the model was close
to that achieved when 80%of the dataset was used for training,
attaining an accuracy of approximately 84%. When 40% of
the dataset was used to train the model, the model parameters
slowly converged as compared to when 80% of the dataset
was used for training, and the final achieved correlation was
again slightly lower at 82%. Finally, when only 20% of the
subset was used for training, the accuracy was significantly
lower than in the other cases.

It is also important to discuss the relationship that exists
between expressed visual discomfort and the parameters defin-
ing the viewing conditions (display size, resolution, viewing
distance, and so on). It is known that the degree to which visual
discomfort is experienced depends on the viewing parameters
[60]. Because of this, it is inadvisable to extrapolate the
performance of DeepVDP to arbitrary viewing conditions,
since it was trained on human subjective data taken under
a specific viewing environment. Still, the experimental MOS
were obtained under typical viewing conditions, and as we
shall see, the trained model performs well on other databases
having somewhat different viewing conditions, allowing us to
impute a degree of robustness to the DeepVDP model.

3) Cross Dataset Test: We also conducted an additional
cross-database evaluation to validate the generality of the
model. Towards this end, we utilized the EPFL S3D image
database [61]. After learning a discomfort prediction model us-
ing 80%of the training data from the IEEE-SA and IVY LAB
databases, predicted visual discomfort scores were inferred on
the S3D images in the EPFL database using the trained model
parameters. Tables IV and V tabulates the LCC and SROCC of
the VDP models following this train-test sequence. As shown
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Fig. 13. Plots of LCC and SROCC as functions of (a) kernel size and (b)
patch size.
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Fig. 14. Plots of (a) training loss, and (b) LCC as functions of epoch number,
using labels from 3D-VDP (red) and from positive/negative depths (blue).

in Tables IV and V, the overall performance of our model was
significantly better than that of the other VDP algorithms.

B. Analysis of DeepVDP

1) Effects of Kernel and Patch Sizes: In order to analyze the
effects of the kernel and patch sizes on model performances,
three different kernel sizes (3 � 3, 5 � 5, and 7 � 7) and five
different patch sizes (32 � 36, 32 � 18, 16 � 18, 16 � 10,
and 10 � 10) were used. The kernel size of the convolutional
layer was fixed to 5 � 5 when the patch size was varied; thus,
only the sizes of the extracted feature maps from the first and
second convolutional layers were varied in the experiments.
Furthermore, when the kernel size was varied, the images were
divided into patches of fixed size 16 � 18 without overlap.

As may be seen in Fig. 13 (a), the correlation scores were
almost the same for kernel sizes of 5 � 5 and 7 � 7. The
5 � 5 kernel, which captures a bit more detail, gave slightly
improved performance [62]. However, the small 3 � 3 kernel
was unable to adequately capture spatial relationships between
neighboring pixels when seeking to learn meaningful low-level
features in the convolutional layers [63]. As shown in Fig.
13 (b), almost the same performances were achieved when
using 32 � 36, 32 � 18, and 16 � 18 patches. However, on
small patches such as 16 � 10 and 10 � 10, the experimental
results indicate that the extracted features did not as adequately
represent visual discomfort.

2) Effects of Proxy Ground-Truth Labels: In DeepVDP,
the proxy ground-truth labels (3D-VDP scores) were used
to supervise training step 1. To study the dependency of the
model on the assigned proxy ground-truth labels, we applied
different proxy ground-truth patch labels defined using only
two features in (3), the negative and positive disparities f 14
and f 15. Hence gl (�) was also trained onto MOS using the neg-
ative and positive disparities computed from the S3D images,
thereby generating the proxy visual discomfort scores. 3D-
VDP scores were not used in these processes. Subsequently,
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Fig. 15. Comparison of LCC and SROCC according to channel of input
images.
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Fig. 16. Failed example using only two input channels (positive and negative
disparities) to train DeepVDP. (a) Left image of S3D image pair “OSL6 75”.
(b) Computed disparity map. (c) Proxy ground-truth labels from 3D-VDP
scores. (d) Predicted visual discomfort score map.

the ground-truth label of each patch was obtained by (4), and
the patch-based CNN model was trained onto it.

Figs. 14 (a) and 14 (b) plot the training loss and LCC
for these choices of proxy ground-truth patch labels. As
shown in Fig. 14 (a), when the proxy ground-truth patch
labels were assigned using only depth information, the training
loss decreased more slowly as compared to using the proxy
ground-truth labels assigned by 3D-VDP. After approximately
60 epochs, the training loss in the former case was even
higher than in the latter case, although it nearly converged.
As shown in Fig. 14 (b), the predictive performance when
using proxy ground-truth patch labels from depth only was
significantly reduced (the LCC was approximately 0:74) than
when the proxy ground-truth labels generated using 3D-VDP
were used. The result strongly suggests that the quality of
the proxy ground-truth patch labels significantly affects how
well representative local features were learned in training
step 1. The proposed proxy ground-truth patch labeling using
3D-VDP scores appears to have effectively enhanced the
prediction of VDP scores in this context.

3) Effects of Input Images: In order to investigate the
efficacy of the selected input images, we conducted additional
experiments using other input images. Initially, two input
images composed of only negative and positive disparities
were used (two channels). As shown in Fig. 15, in this
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Fig. 17. (a) Variation of training loss and (b) variation in PLCC for each
percentage of the training set according to the number of epochs without using
step 1.

case, the LCC and SROCC significantly decreased to � 71%
and � 68%, respectively. Clearly, information was lost when
applying only depth information, without texture. In Fig. 16,
the failed proxy visual discomfort prediction on exemplar
“OSL6 75” strongly suggests that using only the two channel
inputs (negative and positive disparities) is insufficient to train
DeepVDP. As shown in Fig. 16 (c), the proxy ground-truth
labels on this image are uniformly distributed with high values;
the overall image is regarded as comfortable by 3D-VDP.
However, the predicted score map in Fig. 16 (d) is quite
noisy. Moreover, the recorded MOS of this image is 4:38,
one of the most comfortable S3D scenes in the IEEE-SA
database. Clearly, disparity in isolation is an inadequate input
to train DeepVDP to successfully predict experienced visual
discomfort.

Next, the prediction model was trained using four chan-
nels, consisting of the left/right S3D images along with the
negative/positive disparities. The cyclopean image was still
excluded. In this case, the correlation scores improved as
compared to the two-channel case; however, the performances
were still inferior (LCC and SROCC of approximately 0:86
and 0:78, respectively). One may reason that the cyclopean
image formed by the process of binocular fusion is implicated
in the experience of visual discomfort.

4) Advantage of Two-Stage Training Steps: To study the
performance improvement gained by using the two-stage train-
ing procedure, we trained the model using only training step
2 (MOS supervised learning), without training step 1. Figs.
17 (a) and (b) show the results of training loss and LCC
when training step 1 is omitted. As shown in Fig. 17 (a),
the training loss significantly lags when training step 1 is
not used. Fig. 17 (b) shows that the prediction performance
was significantly degraded when the model parameters were
learned only using training step 2, and that the difference was
sustained. These results show that highly representative local
features are learned in training step 1.

5) Visualization of Predicted proxy Visual Discomfort
Scores: Following training step 1, the DeepVDP model is
able to predict proxy visual discomfort scores based on proxy
ground-truth label supervision. In Fig. 18, the predicted proxy
visual discomfort score maps and their ground-truths are
compared. Each row of Fig. 18 shows results from each image
category in the IEEE-SA database: ISS, ISL, INS, INL, OSS,
OSL, ONS, and ONL, respectively. The leftmost column of
Fig. 18 shows the left images of the S3D image pairs, the
center column shows the ground-truth label maps obtained
from 3D-VDP scores, while the rightmost column shows the

Fig. 18. Examples of predicted proxy visual discomfort patch score maps
using training step 1, for each image category in the IEEE-SA database: the
rows correspond to categories ISS, ISL, INS, INL, OSS, OSL, ONS and
ONL, respectively. The left column shows the left images of the S3D image
pairs, the center column shows the proxy ground-truth label maps generated
using 3D-VDP, and the rightmost column shows the predicted proxy visual
discomfort score patch maps, respectively.

predicted proxy visual discomfort patch scores obtained from
the learned model, respectively. It is evident that the learned
model predicts the proxy visual discomfort scores consistently,
which augments VDP performance in training step 2.

6) Feature Map Visualization: Although the proxy ground-
truth patch labels are constructed using only disparity infor-
mation in training step 1, texture information is also involved
in the prediction of visual discomfort by DeepVDP. In order to
analyze the kinds of features being extracted by the DeepVDP
kernels in detail, we captured the feature maps from the first
convolutional layer. As was stated in Section III-A, the input
images are divided into patches of size 16 � 18 without
overlap. These are fed into the patch-based CNN, where the
feed-forward value becomes the predicted visual discomfort
score. Since the kernel size of the first convolutional layer
was 5 � 5 without pooling, padding, or striding, the output
size of each patch was 12� 14. Each input image is comprised
of Nm = 40 � 20 patches. The 480 � 280 feature map can
be obtained by gathering the output of each patch. Since the
number of kernels in the first convolutional layer is 48, then
48 feature maps are observable. Fig. 19 shows six selected
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Fig. 19. Six examples of the feature maps obtained by the first convolutional
layer on input S3D images “ISS7 0” depicted in Figs. 7 and 8. Brighter
regions represent highly activated regions.

examplar feature maps computed on the image “ISS7 0,”
where brighter regions represent highly activated regions.

� Observation 1 (human attention): Fig. 19 (a) shows
that salient regions are dominantly activated, indicating
that some of the kernels heavily depend on human
attention to extract meaningful local VDP features.
However, a few kernels focus on non-salient regions, as
shown in Fig. 19 (b). Although it is difficult to exactly
quantify the importance of each feature map in the
CNN structure, relatively more kernels were activated
values in salient regions than in non-salient regions. This
suggests that many discomfort predictive features relate
to human attention. Notably, DeepVDP extracts not only
local low-level features related to salient and non-salient
regions, but also high-level features combining them.

� Observation 2 (depth levels): Figs. 19 (c) and 19 (d)
show the different feature maps, which indicate that the
kernels selectively respond to the depth levels. Further,
Fig. 19 (c) also shows that negative disparity regions are
mainly activated, while Fig. 19 (d) shows the opposite.
One may conclude that the parameters of DeepVDP are
reliably optimized to predict visual discomfort, since the
main cause of visual discomfort is AVM arising from
forced 3D depths, as observed in Section I.

� Observation 3 (edge and texture orientations): Fig.
19 (e) shows the feature map, which is activated at
strong edges. As suggested in [66], luminance gradients
related to transitions of visual attention are implicated in
visual discomfort i.e., local features responsive to edges
are useful abstractions for predicting visual discomfort.
Further, Fig. 19 (f) shows that the corresponding kernel
activates only certain directional texture components.
This suggests that the orientation of texture also affects
the level of experienced visual discomfort.

The six feature maps in Fig. 19 were selected as simple
examples to visualize the learned local feature characteristics
in terms of lower- and mid-level information. The other
feature maps appear more complex; for example, one of them
activates high frequencies in salient regions with negative
depths. These might capture higher-level information, although
they are extracted from the first convolutional layer. Therefore,
it is expected that the parameters of later layers extract
higher-level features, which embody more complicated VDP
representations.
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Fig. 20. Visualization of two-dimensional manifold obtained by t-SNE. Each
point indicates an S3D image pair, and the points are labeled according to
subjective opinions. Each graph represents (a) A manifold visualization of
input features, (b) A manifold visualization of the aggregated feature vector.

7) Local Neighborhood Embedding: In order to demon-
strate the method of extracting the feature vector of the learned
DeepVDP model, the input features (i.e., four-channel input
images) and the aggregated feature vector (R800) prior to
the MOS regression layer g� 2 are visualized. A well-known
embedding algorithm, t-SNE [68] was employed as a way of
reducing the high-dimensional data into a lower dimension.
Fig. 20 shows a generated two-dimensional manifold obtained
using t-SNE, where each point indicates an S3D image pair,
and the points are labeled according to subjective opinions.
Further, lower MOS represents more uncomfortable S3D im-
age pairs. As shown in Fig. 20 (a), the input features in the
reduced dimension are uncorrelated with MOS, and each S3D
image pair is incoherently clustered. This indicates that the
input features are insufficient to predict the level of visual
discomfort. On the other hand, as shown in Fig. 20 (b), the
data points in the graphed manifold can be clearly separated
according to their MOS values when the extracted global
features are used in t-SNE. The upper left part of the figure
indicates severely uncomfortable S3D pairs, while the lower
right part includes more comfortable scenes. This indicates
that DeepVDP is properly trained onto MOS, and is effective
for extracting meaningful features for VDP.

V. CONCLUSION

We explored a deep learning approach to the problem
of predicting the degree of visual discomfort experienced
when viewing S3D images. We showed that proxy ground-
truth patch labels obtained using 3D-VDP adequately capture
lower level representations of experienced visual discomfort
to drive patch-based training of a CNN to accurately predict
experienced visual discomfort. The results suggest that a
network pretrained on proxy patch labels generated by the
3D-VDP model causes large amounts of latent variables to
converge to more proper optima. Consequently, the proposed
method outperforms previous VDP algorithms, demonstrating
the potential of deep learning for S3D discomfort prediction.
While we do not claim that this study reflects the entire
spectrum of factors that induce visual discomfort when view-
ing S3D (such as color mismatches and other rivalries), it
certainly addresses important disparity-related aspects of dis-
comfort. Beyond visual discomfort prediction, there are a large
number of unsolved problems for evaluating or quantifying
the quality of experience (QoE) of S3D content, such as
immersion, presence, and sense of reality. Moreover, it is
difficult to find studies directed towards understanding the
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QoE of non-stationary S3D video content. Given the rapid
growth in demand for S3D virtual reality, the aforementioned
QoE problems need to be properly addressed towards reliably
delivering high-quality visual content.
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