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ABSTRACT

Full-reference and reduced-reference image quality assessment (IQA) models assume a high quality reference
against which to measure perceptual quality. However, this assumption may be violated when the source image is
upscaled, poorly exposed, or otherwise distorted before being compressed. Reference IQA models on a compressed
but previously distorted “reference” may produce unpredictable results. Hence we propose 2stepQA, which
integrates no-reference (NR) and reference (R) measurements into the quality prediction process. The NR
module accounts for imperfect quality of the reference image, while the R component measures further quality
from compression. A simple, efficient multiplication step fuses these into a single score. We deploy MS-SSIM as
the R component and NIQE as the NR component and combine them using multiplication. We chose MS-SSIM,
since it is efficient and correlates well with subjective scores. Likewise, NIQE is simple, efficient, and generic,
and does not require training on subjective data. The 2stepQA approach can be generalized by combining
other R and NR models. We also built a new data resource: LIVE Wild Compressed Picture Database, where
authentically distorted reference images were JPEG compressed at four levels. 2stepQA is shown to achieve
standout performance compared to other IQA models. The proposed approach is made publicly available at
https://github.com/xiangxuyu/2stepQA.
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1. INTRODUCTION

The past few years have witnessed tremendous growth in the viewing and sharing of digital images and videos.1

Numerous consumer-driven and social media applications, such as Snapchat, Facebook, and Twitter allow users
to rapidly post and share images that they capture with their handheld devices. These images are prone
to a number of very common in-capture distortions, such as camera noise, poor exposure, motion blur, and
compression artifacts. Streaming companies such as Netflix and Youtube offer a large amount of legacy content
including old movies or television programs.2 These video streams, which are obtained from diverse sources, are
often subjected to source-related artifacts such as interlacing, film grain or upscaling. These source videos of
low quality are then encoded for transmission. Being able to evaluate the quality of these twice-distorted images
and videos on the receiver side is of great interest. In this paper, we only consider still pictures that undergo
two stages of distortions (source impairments followed by compression), but the principle is extensible to general
distortion types and videos.

In the majority of cases, human viewers are the end users, and picture quality evaluation is crucial when
storing, processing and transmitting visual data. Since subjective quality rating is impractical at scale, numer-
ous perceptually-designed objective image quality assessment (IQA) algorithms have been developed for image
quality prediction. These are broadly classified either as reference (R) models (including both full-reference and
reduced-reference), if both the distorted image and ostensibly pristine version of it are available to be compared.
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Full-reference models such as SSIM,3 MS-SSIM,4 MAD,5 FSIM,6 SR-SIM,7 VSI8 and HaarPSI,9 deliver excel-
lent quality prediction performance on subjective quality databases such as LIVE IQA,10 TID201311 and CSIQ.5

Reduced-reference models such as RRED12 and SpEED-QA13 extract perceptually relevant features represent-
ing only a subset of the avaliable image information when estimating image quality. No-reference (NR) IQA
algorithms are applied when only a distorted image is available. These models are based on either natural scene
statistics (NSS) or learning process, or both. Models like NIQE14 are “completely blind” approaches in that they
are only driven by NSS of good quality images, while models such as BRISQUE15 and BIQA16 exploit features
combined with support vector regression. Purely data-driven NR IQA methods, such as CORNIA,17 and other
deep learning-based approaches,18–21 have also been proposed in the recent years.

A common assumption of R IQA models that are used to quality-assess compressed images is that the source
image to be coded is of high quality, hence can be regarded as a “pristine” reference. However, when source
artifacts are present, this assumption is violated. Therefore, a reference computation, if applied on a low-quality
source image and a compressed version of it, will likely produce an incorrect quality score. Here we have shown
that reference quality prediction of imperfect images that are subsequently compressed can be greatly improved
by accounting for the source image quality. Towards this end we have devised a simple but effective two-step
R-NR IQA concept which is applied on a pair of images: a possibly distorted reference image and a compressed
(hence further distorted) version of it. An initial NR step captures the prior quality of the reference image
before compression, while the R step determines the further quality degradation between the reference and the
distorted images. Here we focus on processing a possibly distorted reference image to predict the quality of a
JPEG compressed version of it. This development is organized as follows. Section 2 details our two-step IQA
approach, while Section 3 describes a recently developed subjective image database that we created to develop
and evaluate the two-step method. Section 4 discusses the experimental results and Section 5 concludes with
avenues for future work.

2. TWO-STEP REFERENCE-NO-REFERENCE IQA MODEL

(a) MOS: 79 (b) MOS: 51
DMOS: 52
MS-SSIM: 0.9346

(c) MOS: 45 (d) MOS: 36
DMOS: 32
MS-SSIM: 0.9674

Figure 1. (a) A high quality reference image. (b) A JPEG compressed version of (a). (c) A low quality reference image.
(d) A JPEG compressed version of (c).

Reference image quality models have generally assumed that a source reference image is of high quality, e.g.,
like the image shown in Fig. 1(a). When this is true, it is straightforward to apply an R IQA model (e.g. MS-
SSIM) to compare the quality of the original source image against that of its JPEG compressed version (e.g., the
image in Fig. 1(b)). However, if the source is of reduced quality (Fig. 1(c)), then the reference quality prediction
may be unreliable. To illustrate this, consider the following. The source images in Fig. 1(a) and Fig. 1(c) were
drawn from the LIVE In the Wild Challenge IQA database. Each has an associated mean opinion score (MOS).
In a separate study, the compressed versions in Fig. 1(b) and 1(d) were assigned both MOS and differential
mean opinion scores (DMOS). MOS may be regarded as the absolute subjective quality of a distorted image,
while DMOS reduces the effect of content by differencing the MOS of the source and distorted versions of each
image. In practice, DMOS calculations are intended to remove content biases (e.g. due to image aesthetics), but
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Figure 2. Overview of 2stepQA.

in our case, this only reflects quality degradations arising from compression. In Fig. 1, the MS-SSIM values are
in monotonic agreement with DMOS (increasing MS-SSIM corresponds to decreasing DMOS), while this is not
the case for MOS (increasing MS-SSIM corresponds to decreasing in MOS). In other words, both MS-SSIM and
DMOS conclude that 1(d) is of higher quality than 1(b), which contradicts the subjective opinion. This example
shows that given a low quality reference image, a reference quality prediction may fail to correctly predict the
quality of a compressed version of it.

To deal with this highly plausible situation, we introduce what we call the 2stepQA, which is a model and
algorithm that combines R and NR quality measurements in a unified manner. The concept of 2stepQA is
illustrated in Fig. 2. Given a reference source image I and a compressed version Ic, the R module compares Ic
with I, while the NR module determines the quality of the source image I. The NR prediction may be thought
of as “prior” knowledge, that is used when measuring the reference perceptual quality. The scores produced by
the R and NR modules are then combined, e.g. by computing a suitable product of the R and NR prediction
scores, yielding a final 2stepQA score.

We now visually illustrate the potential advantages of 2stepQA. Consider a hypothetical image quality axis in
Fig. 3 that spans the entire quality range, e.g. from “Bad” to “Excellent”. The NR block of 2stepQA evaluates
the quality of I by, for example, computing its perceptual distance from the space of high-quality natural images.
By contrast, the R model measures the distance between I and Ic: When I is of high quality, it will lie closely
to the natural image space, and hence the quality of a compressed version of it may be accurately predicted as
a reference algorithm score. However, if the quality of the reference image is poor, then the result of the NR
will serve to correct the reference score. While there are many ways to combine the no-reference and reference
scores into a single prediction, we have found that defining 2stepQA as a simple product of (functions of) the
two scores to be quite effective.

2.1 Reference IQA Module

A high-performance R IQA module is an essential ingredient of 2stepQA. An excellent choice is the multi-scale
structural similarity (MS-SSIM) index,4 which has found considerable commercial success. MS-SSIM extracts
luminance, contrast and structural information in a multi-scale fashion, delivering quality scores ranging from 0
to 1, where larger values correspond to better quality. In our framework, MS-SSIM is applied to compare I with
Ic, the latter being degraded compression.

2.2 No-Reference IQA Module

The end goal of 2stepQA is to accurately predict the perceptual quality of a compressed source image. Towards
this aim, an efficient NR IQA model is also required and enough. In our prototype 2stepQA model, we use
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Figure 3. Visual illustration of 2stepQA concept. The represented quality condition ranges from low quality to high
quality on the image quality axis with five typical levels and example images. Image I represents a possible pristine image
with fair quality level and Ic is its compressed version. Reference module measures the deviation of Ic from I, while
no-reference module evaluates the distance between I and “perfect” natural image space.

the NIQE index,14 which is a blind NSS-based22 IQA model that requires no training on distorted image or
human opinions of them. The main idea behind NIQE is that the empirical distributions of mean-subtracted and
divisively normalized luminance coefficients of high-quality images follow a gaussian distribution. However, in the
presence of distortions, the empirical distributions tend to stray from gaussianity. By measuring these statistical
deviations, a robust, blind image quality assessment engine is arrived at. Unlike data-driven approaches such as
BRISQUE,15 NIQE is very general, and serves to simplify 2stepQA while delivering good prediction performance.

2.3 2stepQA Model

Combining reference and no-reference models is the main idea behind 2stepQA. As such, 2stepQA should satisfy
two properties: when the reference image is of low quality, the overall 2stepQA score should reflect this, by being
strongly affected by the NR score, rather than relying on the reference comparison alone. Conversely, when the
reference image is of high quality, the 2stepQA score should align closely with the R IQA score. A direct and
simple way to satisfy these properties is to define 2stepQA as a product:

Q2step = QR ·QNR (1)

where QR corresponds to a suitably mapped score (here we use MS-SSIM) computed on a reference image and
a distorted version of it, while QNR is a suitably mapped NR score (here, NIQE) of the reference image. A key
aspect of 2stepQA is that other combinations of reference and no-reference models may be used. This lends a
high degree of versatility to 2stepQA as it provides a general framework for addressing this problem. Because of
popularity and efficacy of the MS-SSIM and NIQE models, we define the exemplar 2stepQA model to be

Q2step = MS-SSIM · (1− NIQE

α
) (2)

i.e. QR = MS-SSIM, QNR = 1 − NIQE
α and α = 100. The form of QNR is arrived at since NIQE increases with

worsening picture quality on a scale of about [0,100] on known databases. MS-SSIM rises with better picture
quality over the range [0,1]. While 2stepQA is very simple, we will show that it is a very effective formulation.

2.4 Generalized Exponential Model

The range of quality scores realized by an IQA algorithm can vary significantly depending on the algorithm’s
design. For instance, a number of R IQA models, such as SSIM, MS-SSIM, FSIM, and so on, are designed
to output quality scores ranging from 0 to 1, while NR IQA models, which are data-dependent or trained on
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human opinions of image quality, usually have the same range as MOS/DMOS. In order to generalize 2stepQA
to account for other combinations of R-NR components, it is necessary to ensure they reside on a common scale,
and therefore, it is important to scale them appropriately before combining them into a single piece. To rescale
R and NR module scores into the same range, a simple logistic rescaling process is applied to match the ranges
and trends of the reference and no-reference scores with MOS. A four-parameter, monotonic logistic function is
utilized to fit the predicted quality score Q to the subjective MOS as given by

Q′ = β2 +
β1 − β2

1 + e−(Q−β3/|β4|)
(3)

where Q′ is the rescaled score after finding the least-squares best-fitting logistic function over the four parameters
{βi; i = 1, .., 4}.

Any IQA database, in principle, can be used as the training data source for a given IQA model to determine β
parameters of Eq. (3). In our experiments, the optimal βs were computed by minimizing the least squares error
between the rescaled objective scores and the subjective MOS from the LIVE IQA Database. Since a reference
image may possibly be afflicted by an unrestrained set of complex distortions, images of all distortion types from
the LIVE corpus were utilized for fitting the logistic function to obtain parameters βNR1 to βNR4. On the other
hand, since in our simulations distorted images are corrupted by only compression artifacts, the JPEG subset of
the LIVE IQA database was used to determine the parameters βR1 to βR4.

Given a distorted image and its reference image, the NR quality score QNR is obtained from the NR module
applied on the reference image, while the R quality score QR is obtained from the R component applied on both
distorted and its reference. The rescaled scores Q′NR and Q′R are computed as

Q′NR = βNR2 +
βNR1 − βNR2

1 + e−(QNR−βNR3/|βNR4|)
(4)

Q′R = βR2 +
βR1 − βR2

1 + e−(QR−βR3/|βR4|)
. (5)

The rescaled scores Q′NR and Q′R, which belong to the same range as MOS are combined as follows:

QG = (Q′NR)γ · (Q′R)1−γ (6)

where γ ∈ [0, 1] is the exponential parameter used to adjust the relative importance of R and NR components
of the generalized exponential model. As discussed in Section 4, γ assumes value close to 0.5 for most of the
databases indicating that both R and NR components when scaled appropriately contribute equally towards
quality prediction. Hence, depending on the application, γ can be fixed to γ = 0.5 or optimized appropriately
using the training set.

3. A NEW DISTORTED-THEN-COMPRESSED IMAGE DATABASE

The majority of publicly available large-scale benchmark IQA databases, such as LIVE IQA,10 TID201311 and
CSIQ,5 use high quality images as reference that correspond to distorted images that were created by introducing
synthetic distortions on the high quality source images. While these popular IQA databases have been quite
valuable in the development of classical IQA algorithms, they do not address the degraded source quality in the
context of subsequent compression distortion. We have created such a resource, which we call the LIVE Wild
Compressed Picture Database. We started with a set of 80 distorted images randomly drawn from the existing
LIVE In the Wild Challenge Image Quality Database,23 which contains a large number of images with widely
diverse authentic image distortions, that were captured using a representative variety of mobile devices.

Since our goal is to predict visual quality when images of varying quality are subjected to compression,
these 80 source images were then JPEG compressed into four different and perceptually distinguishable levels,
yielding four compressed images per distorted content, and 320 distorted-then-compressed images in total. We
then conducted a subjective study to collect human opinion scores on the 400 images (including the 80 distorted
source images). The raw data was processed based on24 and we followed the ITU-R BT 500.13 recommendation25

for subject rejection.
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4. PERFORMANCE EVALUATION

Table 1. Performance of different reference and no-reference IQA models on the LIVE Wild Compressed Picture Database.
The best performance algorithm is highlighted in bold font. Italics indicate no-reference algorithms.

PSNR MS-SSIM FSIM VSI NIQE BRISQUE CORNIA 2stepQA
SROCC 0.4227 0.8930 0.9101 0.7953 0.8457 0.9091 0.9005 0.9311

LCC 0.4299 0.8923 0.9134 0.8153 0.8407 0.8966 0.8955 0.9305

Table 2. SROCC performance of different combinations of reference and no-reference IQA models using general two-step
exponential model on the LIVE Wild Compressed Picture Database. The corresponding exponential parameter value γ
is in bracket. Results using MOS as NR module score are posted for comparison.

PSNR MS-SSIM FSIM VSI
NIQE 0.6609(0.63) 0.9283(0.47) 0.9263(0.37) 0.8775(0.54)

BRISQUE 0.6833(0.62) 0.9333(0.46) 0.9357(0.41) 0.8980(0.53)
CORNIA 0.6807(0.51) 0.9356(0.39) 0.9375(0.36) 0.8992(0.46)

MOS 0.6156(0.71) 0.9401(0.61) 0.9474(0.56) 0.8946(0.64)

Table 3. LCC performance of different combinations of reference and no-reference IQA models using general two-step
exponential model on the LIVE Wild Compressed Picture Database. The corresponding exponential parameter value γ
is in bracket. Results using MOS as NR module score are posted for comparison.

PSNR MS-SSIM FSIM VSI
NIQE 0.6830(0.63) 0.9268(0.47) 0.9278(0.37) 0.8839(0.54)

BRISQUE 0.6743(0.62) 0.9309(0.46) 0.9355(0.41) 0.8988(0.53)
CORNIA 0.6747(0.51) 0.9353(0.39) 0.9394(0.36) 0.9026(0.46)

MOS 0.6064(0.71) 0.9403(0.61) 0.9499(0.56) 0.8981(0.64)

We now describe the experimental analysis of 2stepQA and its comparison against models that was carried out
on the LIVE Wild Compressed Picture Database. The performances of the compared objective prediction models
was measured using the Spearman Rank Order Correlation Coefficient (SROCC) and the Pearson’s (linear)
Correlation Coefficient (LCC). The former measures the monotonicity between the subjective and objective
scores, while the latter measures the degree of linear agreement between them. The subjective scores were
processed by the subject rejection protocols in25 and26 which yield similar results. For both evaluation metrics,
a larger value denotes better model performance. The reported correlation values were calculated by performing
1000 random 80%-20% splits without content overlap, then taking the median value of the results. Before
computing LCC, a logistic non-linearity24 was used to map the quality scores to the subjective scores.

The rescaled indices (1) and (2) in each case were computed and these parameters were held constant in all the
experiments. We compared 2stepQA against the state-of-the-art reference models PSNR, MS-SSIM,4 FSIM6 and
VSI,8 with results given in Table 1. Among the reference models, PSNR was the worst-performing, but it does
not utilize any perceptual properties. MS-SSIM and FSIM both delivered good performances. However, 2stepQA
outperformed all of the other approaches showing that accounting for the quality of the reference source image
is an effective strategy. We also report the performance of the NR models NIQE14 and BRISQUE15(applied on
the distorted images only), and found that both performed well, but not as well as 2stepQA. Fig. 4 plots the
performance of (2) against α. The 2stepQA index clearly attains its best performance at about α = 100.

One of the greatest advantages of the 2stepQA framework is that it can incorporate reference and/or no-
reference metrics depending on the application. To demonstrate this, we also report the results of other R-NR
combinations in Table 2 and 3 using the generalized exponential model. The values of the logistic function
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Figure 4. The performance of 2stepQA index under varied α values.

parameter β1 to β4 of different R or NR models were determined using the LIVE Image Database. The value
of the exponential parameter γ was determined to yield the best performance on each training set, and the
predictor was then applied on the testing set. We also included the MOS as an NR component to demonstrate
how well the NR IQA algorithms perform when used in combinations with popular R IQA algorithms. Across
all possible R-NR combinations, we observed significant improvements when using Eq. (6).

5. FUTURE WORK

We proposed a novel two-step reference-no-reference IQA framework that integrates reference and no-reference
information using a simple and efficient multiplication step. We believe that this approach will be useful to
better perceptually optimize picture compression systems.27 We evaluated the proposed approach on a recently
developed subjective database and found that it produces standout performance compared to state-of-the-art
reference models. We envision developing more sophisticated bayesian ways to integrate reference and no-
reference information2 e.g., by conditioning reference quality predictions on prior no-reference predictions of the
source picture. We believe that the ideas presented here relate fully to the video quality assessment (VQA)
problem as well, in cases where the original source video is not of high quality and can be subjected to source
inspection prior to compression.
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