


1418 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE VI

RESULTS OF SIGNIFICANCE TESTS BETWEEN THE PERFORMANCES OF VQA MODELS ON THE NFLXC DATASET. EACH CELL SHOWS THE STATISTICAL
SIGNIFICANCE OF SROCC AND PLCC. A VALUE OF ‘1’ INDICATES THAT THE ROW HAS STATISTICALLY HIGHER CORRELATION COEFFICIENT

THAN THE COLUMN, WHILE ‘0’ SIGNIFIES THAT THE COLUMN HAS STATISTICALLY LOWER CORRELATION COEFFICIENT THAN THE ROW.
A SYMBOL OF ‘-’ INDICATES NO STATISTICAL DIFFERENCE BETWEEN THE CORRELATION COEFFICIENTS OF ROW AND COLUMN

slightly higher than 0.6, whereas VMAFc outperformed most
of the other methods, achieving 0.82 SROCC. This improve-
ment over VMAF 0.6.1 is understandable, since the chro-
matic features were efficiently integrated. It may also be
found that VMAFc performed marginally worse than VMAF
0.6.1 on some databases. Overall, a gain of about 0.01 in
both SROCC / PLCC was achieved by VMAFc. Regarding
the training set of VMAFc, it should be noted that the
VMAF+ dataset does not incorporate any videos with the
setting of �QPc, yet a remarkable performance improvement
is still attained on NFLXc. This is quite significant, since
unlike other databases, NFLXc allows the measurement of
performance on compressed videos with independent chroma
compression, which as we have shown, can result in sig-
nificantly improved perceptual rate-distortion optimization.
Despite being the top-performer on NFLXc, the iCID model
failed on many of the other datasets with an overall SROCC
performance of 0.766, making it hard to justify its use in
practical applications.

When comparing PSNRY, PSNR411, PSNR611, and CSP-
SNR, it may be observed that the levels of performance
attained by the PSNR family are quite poor. However, when
tested on NFLXc, CSPSNR did better than PSNR411 and
PSNR611, which promotes the result reported in [20].

C. Significance Test

We further analyzed the statistical significance of model
performances as expressed by the SROCC and PLCC values
reported in Table V, following the recommended procedure in
section 7.6.1 of ITU-T Rec. P.1401 [60]. The test uses statistics
derived from Fisher’s-z transformed correlation coefficients in
each comparison, compared with the 95% two-tailed Student’s
t-test critical value. Table VI shows the results of the statistical
significance tests.

From the results shown in the table, it may be observed that
iCID and VMAFc statistically surpassed all the other models,
since most of them only utilize luminance information. Unsur-
prisingly, PSNRY performed significantly worse than most of
the models. It may also be noticed that there was no statistical

TABLE VII

COMPARISON AGAINST DEEP LEARNING BASED VQA MODEL

difference observed when comparing the other models. This
is likely because the test methodology was too conservative,
given the limited sample size used to calculate correlation
coefficients. However, the VMAFc model was still statistically
better than most of the other models under this protocol.

D. Comparison With a Deep Learning Based VQA Model

Recently, deep convolutional neural networks have been
shown to deliver standout performance on a wide variety of
applications. In the field of video quality, a full-reference
model called DeepVQA [64] has been proposed, that
achieves state-of-the-art performance on the LIVE-VQA and
CSIQ-VQA datasets. Unfortunately, the authors of DeepVQA
could not provide a trained model that can be tested on
all the VQA datasets. To fairly compare DeepVQA against
VMAF / VMAFc, we followed the train-test split that yielded
the median performance of the DeepVQA-4ch model provided
by the authors in [64]. We re-trained the VMAF models
on each dataset with the same parameters (C, γ ) as the
original model for simplicity. The results of the performance
comparison are shown in Table VII. We report both the
DeepVQA-4ch model and the best-performing DeepVQA-
CNAN model. The values for the DeepVQA models are taken
from Tables III and IV in the original paper [64]. Overall,
DeepVQA yielded slightly worse SROCC / PLCC performance
than VMAF and VMAFc on LIVE-VQA, while performing
much better on CSIQ-VQA. This is because CSIQ-VQA
mostly contains legacy distortions, such as additive white
noise (AWGN) and simulated wireless transmission loss,
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TABLE VIII

CROSS DATASET COMPARISON OF THE VMAFC MODEL. EACH CELL SHOWS THE SROCC PERFORMANCE OF TRAINING ON THE DATASET IN THE ROW
AND TESTING ON THE DATASET IN THE COLUMN. THE BEST OVERALL PERFORMANCE IS HIGHLIGHTED IN BOLDFACE

which are of little interest in modern video streaming sce-
narios. The results also indicate that deep neural networks
have the potential to learn good features, including chroma,
for assessing video quality.

E. Cross-Database Comparison

In addition to analyzing model performance on one training
dataset, we investigated the effects of using different datasets
to train VMAFc, with results reported in Table VIII. Using the
10 available VQA databases, we trained the SVR model (with
feature fVMAFc) on each dataset, then tested on the others. Due
to the differences between the datasets, using the same para-
meters (C, γ ) = (23, 2−3) yielded unsatisfactory performance
on some training sets. Therefore, for fair comparison, we sep-
arately searched the SVR parameters on a 7 × 7 grid on each
dataset to optimize the overall performance. The experimental
results clearly shows the outstanding performance attained
by using VMAF+ as the training data. Also, the SROCC
attained when testing on NFLXc was generally greater than
0.7, among the different training sets. This strongly suggests
the robustness of the added chromatic features. It should be
noted that the performance results on the VMAF+ training set
differ slightly from the results reported in Table V, due to
different optimization objectives.

F. Monotonicity Analysis

Lastly, we study the monotonicity property of the trained
models. Ideally, a VQA model should satisfy the following
property: when the chroma_qp_offset parameter is increased,
while fixing the other parameters, the predicted quality score
M should be monotonically non-increasing. That is, given
two chroma_qp_offset values �QPc,1 ≤ �QPc,2, then we
desire that M1 ≥ M2. Similarly, if chroma_qp_offset is fixed,
the predicted quality score should decrease or maintain at the
same level, as the CRF is increased. This would allow the
model to be used for constructing bitrate ladders and for
calculating BD-rate.

We collected 15 test video contents of 1080p resolution
and YUV420 format from Xiph Video Test Media5 to con-
duct the experiment. The source videos were encoded at

5https://media.xiph.org/video/derf/

Fig. 13. Monotonicity analysis for variants of trained VMAF models.
(a) and (b) are the predictions from VMAF 0.6.1 and VMAFc (averaged
over 15 sequences), respectively. (c) and (d) show failed cases of a model
trained with (C, γ ) = (23, 22) using the same features as VMAFc, but without
quantization.

3 different CRF values: 15, 25, and 35. At each CRF level,
we further assigned 8 equally separated �QPc steps, ranging
from 0 to 42. As shown in Fig. 13, VMAF 0.6.1 delivered
a flat result with respect to �QPc, as should be expected,
since its features only ingest luma information. By contrast,
the perfectly monotonic plot given by VMAFc indicates that
the additional chromatic features were properly integrated.
It may be observed in Fig. 13(b) that the plot for CRF = 35
saturates fast. This is because the quantization parameter in (3)
already reaches its maximum value of 51 at �QPc = 24.
We also demonstrated the merit of this analysis by a fail case
in Figs. 13(c), 13(d): this model achieves 0.730 of SROCC
on the NFLXc dataset, which is a substantial improvement
as compared with the 0.612 of SROCC of VMAF 0.6.1.
Unfortunately, the monotonicity property does not hold indi-
vidually or on average, which suggests the possibility of
overfitting.
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VII. CONCLUSION AND FUTURE WORK

We constructed a subjective video quality study and data-
base to support the design of algorithms that can better
predict the quality of chromatically distorted videos. This
new resource contains HEVC-compressed video contents,
spanning wide ranges of quality levels applied differently
on a per-channel basis. We also improved an existing high-
performing, learning based VQA model (VMAF) by inte-
grating two simple features extracted from chroma channels,
and compared the performance of the new chroma-sensitized
model against several leading objective VQA algorithms. The
new VMAFc model was found to be the top performer on the
new chroma distortion dataset NFLXc.

We hope that this work encourages increased awareness of
ways to address chromatic distortions in the design of quality
models, databases, and future compression protocols. The
results from our human study indicate that there is room for
improvement in the perceptual coding efficiency of modern
video codecs, by increasing the compression factor on chroma
channels. With the improved video quality model, it is possible
to jointly optimize luma and chroma compression in video
encoders. For example, the chroma components could be
further subsampled or quantized without suffering perceptual
fidelity.

Next, we plan to seek new chromatic features that can be
used to both effectively capture chroma distortions, as well as
preserve performance on luminance distortions. Investigating
more sophisticated machine learning models is also of interest.
Although compression engines create the most prevalent and
common artifacts in streaming video scenarios, there exist
other important sources of chromatic distortions, such as
subsampling and chroma noise. Creating databases and VQA
algorithms that address different kinds of realistic chromatic
distortions would be quite valuable. New distortion types
emerging from deep video processing problems [65], [66]
are also worthy of study. Looking further ahead, developing
protocols to optimize video encoders by exploiting improved
models of chromatic distortion perception is an intriguing topic
of potentially high practical impact.
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