
Signal Processing: Image Communication 128 (2024) 117172

A
0

Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

Learned fractional downsampling network for adaptive video streaming
Li-Heng Chen a,b,∗, Christos G. Bampis b, Zhi Li b, Joel Sole b, Chao Chen c, Alan C. Bovik a

a Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
b Netflix, Inc, Los Gatos, CA, USA
c Discord, Inc, San Francisco, CA, USA

A R T I C L E I N F O

Keywords:
Downsampling
Convolutional neural networks
Adaptive video streaming
Perceptual video quality

A B S T R A C T

Given increasing demand for very large format contents and displays, spatial resolution changes have become
an important part of video streaming. In particular, video downscaling is a key ingredient that streaming
providers implement in their encoding pipeline as part of video quality optimization workflows. Here, we
propose a downsampling network architecture that progressively reconstructs residuals at different scales.
Since the layers of convolutional neural networks (CNNs) can only be used to alter the resolutions of their
inputs by integer scale factors, we seek new ways to achieve fractional scaling, which is crucial in many
video processing applications. More concretely, we utilize an alternative building block, formulated as a
conventional convolutional layer followed by a differentiable resizer. To validate the efficacy of our proposed
downsampling network, we integrated it into a modern video encoding system for adaptive streaming. We
extensively evaluated our method using a variety of different video codecs and upsampling algorithms to show
its generality. The experimental results show that improvements in coding efficiency over the conventional
Lanczos algorithm and state-of-the-art methods are attained, in terms of PSNR, SSIM, and VMAF, when tested
on high-resolution test videos. In addition to quantitative experiments, we also carried out a subjective quality
study, validating that the proposed downsampling model yields favorable results.
1. Introduction

Digital videos have become the largest portion of Internet traffic,
driven by the evolution of consumer electronics and the tremendous
popularity of video sharing and streaming platforms. Recently, the
demand for online videos has surged even further during the global
pandemic. In a streaming video workflow, each component plays an
important role in achieving end-to-end efficiency. For example, raw
video sources determine the base video quality, while the selection
of encoding parameters affects the rate–distortion tradeoffs of video
compression. An important recent advance is adaptive streaming frame-
work, a technique that is widely used by video streaming services like
Netflix, Youtube, and Facebook to improve the quality of experience of
viewers [1–3].

In a general workflow for adaptive video streaming like that il-
lustrated in Fig. 1, a high-resolution source video segment (typically
a scene) is spatially downscaled into multiple resolutions using a set
of scale factors 𝑀 ∈ Q+. The videos at each resolution are then
encoded using different quantization parameters (QPs), yielding a va-
riety of rate-quality tradeoffs. From amongst the generated resolution-
bitrate representations, a ‘‘best’’ video chunk is determined (typically
by perceptual optimization using an objective video quality model like

∗ Corresponding author at: Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
E-mail address: lhchen@utexas.edu (L.-H. Chen).

SSIM [4], VIF [5], or VMAF [6].), then streamed. On the client side, the
bitstream is decoded and scaled back to the device resolution prior to
display. It is important to understand that the scale factor 𝑀 ≥ 1 may
be any reasonable rational number. Despite not being explicitly defined
in the adaptive streaming protocols, some specific encoding resolutions
that require fractional downsampling are essential to enable adaptation
to device capability. For instance, streaming a 1080p source at 720p
resolution (𝑀 = 1.5) is one of the most common choices of streaming
services. A system lacking such resolutions may deliver suboptimal
rate–distortion performance. The upscaling algorithms implemented on
different display devices generally vary, and are not often known by the
stream providers. Hence, from a providers perspective, the encoding
pipeline cannot be optimized for a specific upsampling algorithm.

Over the past few years, deep neural networks have been applied
to solve a wide diversity of video processing problems [7–9], including
architectures designed for image resizing. Unlike legacy resizing algo-
rithms, which rely heavily on conventional signal processing concepts,
here we will optimize the parameters of a learned resizer in an end-
to-end manner. In this way, we seek to improve adaptive streaming
pipelines using CNN-based downsampling protocols. From a practical
perspective, several design facets/challenges need consideration:
vailable online 22 July 2024
923-5965/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.image.2024.117172
Received 25 October 2021; Received in revised form 5 August 2022; Accepted 15 J
data mining, AI training, and similar technologies.

uly 2024

https://www.elsevier.com/locate/image
https://www.elsevier.com/locate/image
mailto:lhchen@utexas.edu
https://doi.org/10.1016/j.image.2024.117172
https://doi.org/10.1016/j.image.2024.117172
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2024.117172&domain=pdf

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.

T
j
r
u
s

T
r
p
E
c

2

i
i
l

Fig. 1. A general encoding/decoding pipeline for adaptive streaming. Downsampling
(represented by M↓) and upsampling (represented by M↑) are an integral part of the
pipeline. The parameter 𝑀 ≥ 1 denotes the current scale factor, which may be varied.
The end-to-end video quality can be used to determine encoding recipe.

1. Model generality. As previously stated, the upscaling algorithm
at the receiver is unknown at the encoder. Hence, downsam-
pling models should generalize well to different upsampling
algorithms. It would also be beneficial if the models are agnostic
to encoding algorithms, since video contents may be streamed in
the format of multiple codecs.

2. Arbitrary scale factors. When designing video resizers, allow-
ing for non-integer scale factors is an important, but often ne-
glected, feature of compression workflows. However, currently
available convolutional layers can only resize their inputs by
integer factors.

3. Model complexity. A CNN-based model used for scaling should
not be too computationally expensive. Since modern video en-
coding pipelines often process contents with resolution as large
as 4K, deep models with many parameters may fail to meet
memory efficiency or speed constraints.

owards addressing these challenges, we conducted an online sub-
ective video quality study that we use to analyze and compare our
esizing model to justify the perceptual relevance of our results. We
se this tool to support the main contributions of this work, which we
ummarize as follows:

• We show a way to re-design network architectures to learn resid-
uals prior to scaling. This provides significant improvement over
our early results [10].

• Our new model allows for fractional resizing factors.
• As a demonstration of the value of the approach, we integrate

the learned downsampling models with a realistic video encod-
ing pipeline for adaptive video streaming, to achieve improved
coding efficiency.

• We conduct extensive experiments to validate both the objective
and subjective quality improvements delivered by our proposed
approach. Our model can generalize well across different video
codecs and upsamplers.

he rest of this paper is organized as follows. Section 2 reviews the
elated literature, while Section 3 presents details of our new pro-
osed network architecture which allows non-integer resizing factors.
xperiments and analysis are presented in Section 4. Finally, Section 5
oncludes with a discussion of future directions of research.

. Background

We begin with a background review of studies related to encod-
ng for adaptive video streaming and objective video quality. Follow-
ng that, we discuss recent research work on conventional/machine
earning based video scaling algorithms.
2

2.1. Brief overview of adaptive video streaming

Many early ‘fixed bitrate ladder’ approaches determine a resolution
for each of a set of specified bitrates. These utilized look-up tables that
were designed empirically [11], or that can be adapted to video con-
tent [12]. Studies [13–15] have shown that encoding videos at lower
resolutions generally results in better quality, when videos are com-
pressed to low bitrates. These schemes balance distortions produced by
scaling against those by video encoding.

A more sophisticated method is to encode each source video at
multiple combinations of resolution and compression levels, yielding
multiple rate–distortion (R–D) curves. Optimal encoding recipes can
then be selected on the convex hull of these R–D curves. This concept
has been employed by Netflix [12] and other streaming companies [1,
3]. More sophisticated resolution adaptation approaches have also
been investigated [16–18], involving super-resolution (SR) [19], sta-
tistical modeling [20], or classification [21]. Two recently proposed
frameworks, ViSTRA [22] and ViSTRA2 [23], utilize spatio-temporal
(and bitdepth) resolution adaptation and a CNN-based super-resolution
model to obtain significant improvements in coding efficiency.

2.2. Objective video quality assessment algorithms

Another topic closely relevant to adaptive video streaming is the
prediction of perceptual video quality. We will require the use of
full-reference video quality assessment (VQA) models, given that high-
quality reference data is usually available at the encoder (provider)
side of a video streaming pipeline. Rather than using the PSNR, which
correlates poorly with visual perception [24], we can select from a
variety of powerful perception-based VQA models, such as VIF [5],
MOVIE [25], ST-MAD [26], VQM-VFD [27–29], and so on [30–33]. The
most successful of these are the SSIM family [4,34] of computationally
simple models, and VMAF [6]. These are currently widely deployed
to perceptually optimize a large fraction of compressed Internet video
traffic, including downsampling conducted as part of compression.

2.3. Resizing algorithms

Beyond early, simple approaches to video resizing or super-
resolution, such as bilinear, bicubic [35], and Lanczos interpolation,
a variety of more sophisticated models have been proposed. For ex-
ample, patch-based methods have recently been proposed that exploit
intra [36,37] or inter [38,39] similarities, and data-driven models [40–
43] have produced excellent results. However, these kinds of upscaling
models are expensive for consumer devices, and simple interpolation
filters are still used by most of web browsers, video players, and
handheld devices. Importantly, upscaling algorithms are usually imple-
mented on the device (client) side, and they are generally not known
during encoding.

As compared to the SR problem, optimization of resolution re-
duction has been much less extensively studied, but there has been
some recent work. Recent approaches include aligning local image
features by optimizing a joint bilateral filter [44], and preserving
perceptually important details [45–47]. Deep learning based down-
sampling models include CNN-CR [48], which applies a 10-layer CNN
to learn the residuals of bicubic downsampled images. Kim et al.
jointly trained a downscaling network and an upscaling network to
address task-related scenarios [49]. The content adaptive resampler
(CAR) model [50] also estimates both downsampling and upsampling
kernels by training an existing SR network. We are aware of only a few
studies [48,51] that develop learned downsampling for compression.
While these methodologies can produce significant improvements in
compression efficiency, non-integer scale factors were not considered.
Another recent solution [52] treats non-integer scaling as a special
case. This method, which is the most related to our work, operates
by resizing on input feature map to a desired resolution before feeding

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.

(
o

3

w
c
F
a
f
N



s

u
r
s



N
s

i
w
A
l
s



w
i
r

into a CNN, but only when the scale factor is not an integer. Other-
wise, a convolutional layer with integer stride is used. Our proposed
elementary block, which we introduce in Section 3.1, takes a simpler
form, and can be used for scaling by arbitrary factors. Moreover, the
method in [52] presumes the use of bilinear upsampling on any device
being fed downstream. As we will demonstrate in Section 4.5, training
downsampling networks against subsequent bilinear upsampling can
produce results that ‘‘overshot’’, if they are then employed in systems
using more sophisticated upsamplers.

3. Proposed method

Next we describe the design methodology behind our proposed
downsampling models, including the network architecture, training
framework, the loss functions that we employ, and details regarding
the implementation.

3.1. Dealing with fractional scale factors

Towards understanding how we can resolve the integer limitation
on downsample scaling that is imposed by CNNs, we begin by exploring
two different methods:

3.1.1. ‘‘Digital signal processing’’ approach
Changing the sampling density of digital signals by a non-integer

factor can be achieved by applying successive expansion and decima-
tion operations, given a rational scale factor

𝑀 = 𝐿
𝑁

, (1)

where 𝐿 and 𝑁 are integers. Inspired by the classic fractional rate con-
version structure, we can design an upsampling network 𝑓↑𝐿, followed
by a downsampling network 𝑓↓𝑁 , using integer scale factors 𝐿 and 𝑁 ,
respectively. As illustrated in Fig. 2, let 𝑥 ∈ RW×H be an input frame or
feature map to be resized. Then an intermediate frame or map can be
generated by

𝑥̃ = 𝑓↑𝐿(𝑥) ∈ RW𝐿×H𝐿. (2)

Then, 𝑥̃ is processed by the downsampling network 𝑓↓𝑁 , resulting in a
downscaled output

𝑥̂ = 𝑓↓𝑁 (𝑥̃) = 𝑓↓𝑁
(

𝑓↑𝐿(𝑥)
)

, (3)

where 𝑥̂ ∈ R
W𝐿
𝑁 × H𝐿

𝑁 has its resolution reduced by a factor 𝑀 along both
dimensions. This structure is quite similar to the polyphase represen-
tation used in multirate signal processing. The trainable convolutional
layers placed after the interpolation/decimation modules are analogous
to polyphase-decomposed filters. However, one problem with this di-
rect approach can occur when either the upsampling factor 𝐿, or the
input resolution is large, creating very high requirements on memory.
For example, converting a 2160p input to 1440p (𝑀 = 1.5) with
𝐿,𝑁) = (2, 3) may introduce out-of-memory issues, since feature maps
f 4320p resolution have to be stored in the upsampling network 𝑓↑𝐿.

.1.2. Using a conv-resize block
Another approach is to utilize an alternative building block, as

e recently proposed in our preliminary work [10].1 We begin by
omparing two commonly used convolutional blocks, as shown in
igs. 3(a) and 3(b). Given an input 𝑥 of spatial resolution 𝑊 × 𝐻 ,
typical trainable convolutional block with downsampling outputs a

eature map ↓𝑀 (𝑥), yielding a map having reduced resolution 𝑊
𝑀 × 𝐻

𝑀 .
ormally, downsampling by a factor 𝑀 is accomplished as (Fig. 3(a))

↓𝑀 (𝑥) = 𝑠=𝑀 (𝑥), (4)

1 We have become aware of a near-simultaneous submission [53] using
imilar ideas from Google Research.
3

p

Fig. 2. A conceptual network structure that allows for fractional resizing factors. The
‘↑ L’ block can be realized by a deconvolution layer (e.g. transposed convolution), while
the ‘↓ N’ block can be as simple as a convolutional layer having integer stride.

Fig. 3. Comparison of three convolutional blocks yielding down-sampled outputs. (a)
A convolutional block resizes by controlling the integer stride parameter 𝑠. (b) A
convolutional block with 𝑠 = 1 resizes using an additional pooling layer. (c) Our
proposed resizing module is constructed as a convolutional layer with 𝑠 = 1 followed
by a resize operation, allowing for arbitrary resizing factors.

where 𝑠 denotes convolution outputs computed at samples separated
by an (integer) stride parameter 𝑠. Alternatively, a pooling layer ↓𝑀
sing (typically) max pooling or average pooling, yielding a reduced
esolution map (Fig. 3(b)) may be applied following convolution with
tride 𝑠 = 1,

↓𝑀 (𝑥) = ↓𝑀
[

𝑠=1(𝑥)
]

. (5)

ote that the resolution is reduced by a factor of integer patch size,
ince only one value is pooled from each patch in a feature map.

Unfortunately, these two schemes only allow downsampling by
nteger scale factors 𝑀 ∈ Z+, limiting flexibility which may be required
hen implementing resolution changes in many broader applications.
s shown in Fig. 3(c), we address this problem by replacing the pooling

ayer  in (5) with a differentiable resizer  that supports arbitrary
cale factors 𝑀 ∈ Q+

↓𝑀 (𝑥) = ↓𝑀
[

𝑠=1(𝑥)
]

, (6)

hich we dub the conv-resize block. Thus, the proposed build-
ng block is a convolutional layer conv followed by a bilinear
esizer, and the entire network can be trained end-to-end by back-
ropagating through the forward model. A a similar ‘‘resize-conv’’

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.
Fig. 4. Architecture of the two proposed models. Both consist of a pre-downsampling network followed by a post-downsampling network. The convolution parameters are denoted
as: kernel size (height×width) ∣ output channel (number of filters) ∣ stride ∣ activation function.
Fig. 5. Residuals output from the pre-downsampling network (top row) and the post-downsampling network (bottom row) trained using different scale factors. The first column
shows the corresponding source frame extracted from the test sequence snow_mnt. For visualization, we scaled the bottom row back to the original resolution and processed all
residuals by the same amount of contrast adjustment.
block has been used to mitigate artifacts that can arise from summing
uneven overlapped responses in transposed convolution [54]. Another
building block, the Spatial Transformer Network (STN) [55], also com-
prises a bilinear interpolation layer, making it applicable to fractional
resize factors. However, interpolation in STN is used to sample affine-
transformed coordinates. Recent work reported in [53] also proposed
a bilinear resizer to handle arbitrary resize factors in a network. The
authors show that resizing an input image by a learned fractional
resizer can lead to better performance in various computer vision tasks.

3.2. Proposed progressive network for downsampling

We construct our downsampling models in a progressive manner.
Generally, they take a 3-channel RGB signal at original resolution
as input, and progressively predict residual signals at two scales by
cascading two sub-networks. The spirit behind this approach is simple:
the first sub-network pre-filters the original image, thereby capturing
the spatial information that we aim to preserve during reconstruc-
tion. We will refer this sub-network to as the ‘‘pre-downsampling
4

network’’. The output is then fed to the second sub-network (post-
downsampling), whose goal is to extract features that can ‘‘repair’’ the
spatially degraded image.

As illustrated in Fig. 4, each sub-network consists of five stages of
convolutional layers. In this example, the sizes of the convolutional and
transposed convolutional layers are fixed at 3 × 3 in all layers, while
the number of filters is 64 in each of the first 4 stages. We zero pad
the boundaries of the feature maps before applying each convolution,
so that the output size is not reduced. Except for the last layer, all of
the convolutional layers are activated by a ReLU nonlinearity. Finally, a
3-channel output is produced, yielding a residual that is added element-
wise to the (bicubic-resized) input image. The parameterization of each
layer is detailed in the figure.

We propose non-integer scaling via the two approaches described in
Section 3.1, resulting in two model variants:

The ProgDown model: The ProgDown model depicted in Fig. 4(a)
converts the input dimension by combining upsampling and down-
sampling by strides of 𝐿 and 𝑁 , respectively. The pre-downsampling
network serves to ‘‘interpolate’’ the input, resulting in a residual map

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.
Fig. 6. Histograms of the residuals output from the pre-downsampling network (left)
and the post-downsampling network (right) shown in Fig. 5.

Fig. 7. Detailed training framework of a downsampling network for adaptive video
streaming. The arrows indicate the flow of data in the network. As a non-differentiable
component, the gray ‘Encoding’ block is not presented in our implementation.

with dimensions increased by a factor of 𝐿. The post-downsampling
network decimates, and restores the intermediate image. This network
architecture is designed using the approach described in Section 3.1.1.
By selecting (𝐿,𝑁), any rational scaling ratio can be determined. For
example, a video frame is scaled from 1080p to 720p by setting
(𝐿,𝑁) = (2, 3), equivalent to a network with 𝑀 = 1.5.

The ProgDownLite model: In the other variation (Fig. 4(b)), the
image is subsampled by the proposed conv-resize block (Fig. 3(c))
presented in the first layer of the post-downsampling network. There-
fore, the pre-downsampling network always reconstructs a residual
having the same size as its input. Note that the two models have
identical pre-downsampling networks when 𝑀 is an integer, since then
𝐿 = 1. The first sub-network of this model is less computationally
intensive when 𝑀 is not an integer, since only 𝐿−2 of the pixels are
processed as compared with the ProgDown model. Hence, we named
the second variation the ProgDownLite model.

3.3. Visualization of learned residuals

To illustrate how the networks reduce the reconstruction error,
we selected a 1080p test sequence from the Xiph Video Test Media,2
and downsampled it using the ProgDown models by four integer scale
factors. The residuals learned from the two sub-networks are depicted
in Fig. 5. It may be observed that (non-zero) residuals are mostly
located in regions containing significant details. This is not unexpected,
since, high-frequency components are more susceptible to degradation
from scaling. The histograms of the learned residuals are plotted in
Fig. 6. From Figs. 5 and 6, it may also be observed that the pre-
downsampling network produces more ‘‘active’’ residuals when the scale
factor 𝑀 is large. The residual map in such case tends to have larger
magnitudes, and a heavy-tailed histogram. On the other hand, the resid-
uals output by the post-downsampling network are relatively invariant
to the scale factor. This strongly suggests the importance of filtering
before decimating pixels, especially when the scale factor is large.

3.4. End-to-end training framework

Our approach to training a downsampling model is depicted in
Fig. 7. With the aim to end-to-end optimize the downsampling network
for easy insertion into adaptive streaming scenarios, we constructed a

2 https://media.xiph.org/video/derf/
5

training framework similar to the encoding pipeline shown in Fig. 1.
The input training data is down-scaled by a network with trainable
parameters, encoded, and reconstructed to the original resolution by
an upscaler. Since all conventional hybrid video encoders, such as
H.264, are not differentiable components, they are not feasible for back-
propagation. Thus, we relax this problem by simply removing the
encoder from the pipeline. We implemented the upscaling algorithm us-
ing bicubic interpolation, as a generic and reasonably high-performance
comparison. As we will show, this design choice achieves consistent
performance gains for all the widely adopted upscaling algorithms that
were tested.

3.5. Loss function

Let 𝐱 be a input source batch and 𝜙 be the model parameters of the
downsampling network 𝑓 . The reconstructed batch 𝐱̂ is formulated by

𝐱̂ = bicubic↑𝑀 (𝐱̃) = bicubic↑𝑀 (𝑓 (𝐱;𝜙)) , (7)

where bicubic↑𝑀 denotes the bicubic upsampling operation with a
factor of 𝑀 and 𝐱̃ = 𝑓 (𝐱;𝜙) is the network output. Both 𝐱 and 𝐱̂ reside
in RGB color space. Our goal is to optimize the parameters 𝜙, such that
the pipeline can generate a reconstructed batch 𝐱̂ that has high fidelity
relative to the ground-truth(the source batch 𝐱). To this end, we train
the model against the following losses.

3.5.1. Pixel-wise loss
The loss function is defined as the Euclidean distance 𝑑 between 𝐱

and 𝐱̂:

pixel (𝐱, 𝐱̂;𝜙) = 𝑑 (𝐱, 𝐱̂) = ‖𝐱 − 𝐱̂‖22 . (8)

Minimizing (8) maximizes the PSNR of the reconstructed images.

3.5.2. Guided loss
As the scale factor 𝑀 grows, we occasionally observe unpleasant

artifacts in extreme subsampling scenarios. For instance, aliasing may
occur on contents with significant high-frequency components, which
may manifest as flickering noise. Aliasing can arise because the pixel-
wise loss is fundamentally limited in penalizing these artifacts. To
address this aspect, we apply an 𝓁1 regularization term on the residuals
between network output and a guided image batch 𝐱𝑔 , since it is less
sensitive to outliers:

guide (𝐱, 𝐱̂;𝜙) =
{

‖

‖

‖

𝐱̂ − 𝐱𝑔
‖

‖

‖1
, if 𝑀 ≥ 4

0, if 𝑀 < 4
. (9)

We use external software (ffmpeg) to generate Lanczos-downsampled
batches as the guided images. Since Lanczos produces results having
fewer less high-frequency artifacts, but does promote blur, this term
provides control over a trade-off between blur and aliasing.

Finally, the net loss for optimizing the network 𝑓 is defined as a
combination of the losses from Eqs. (8) and (9):

 (𝐱, 𝐱̂;𝜙) = pixel (𝐱, 𝐱̂;𝜙) + 𝜆guide (𝐱, 𝐱̂;𝜙) , (10)

where 𝜆 weights the pixel loss against the guided loss. We empirically
set 𝜆 = 3 for both 𝑀 = 4 and 5. This was accomplished by spacing
values along the reals and choosing the value that best mitigated
artifacts. By back-propagating through the forward model, the loss
derivative was used to drive updates of 𝜙.

3.6. Implementation and training details

We developed and trained our proposed deep downsampling
models using the TensorFlow framework (version 1.15). The Tensor-
flow APIs tf.image.resize_bilinear and tf.image.
resize_bicubic were utilized to conduct bilinear and bicubic op-
eration in the network, respectively. We set the parameter half_
pixel_centers=True to align the output pixel index with the

https://media.xiph.org/video/derf/

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.

a

4

4

o
a
U
u
b
p
D
d
d
t
w
t
s
f

4

v
i
s
T

A

Table 1
Performance comparison of downsampling algorithms followed by bicubic upscaling on four SR benchmarking datasets.

Scale Downsampler Set5 [58] Set14 [59] Urban100 [60] BSDS100 [61]

PSNR SSIM VMAF PSNR SSIM VMAF PSNR SSIM VMAF PSNR SSIM VMAF

2×

Lanczos↓ 34.25 0.9477 89.32 30.51 0.8978 83.70 27.24 0.8695 78.87 29.92 0.8762 80.13
DPID↓ [46] 33.95 0.9471 85.01 30.30 0.8990 79.12 27.04 0.8724 73.25 29.74 0.8796 76.12
𝐿0-regularized↓ [47] 30.99 0.9138 72.80 28.82 0.8752 70.93 26.10 0.8559 68.49 28.62 0.8543 68.62
CNN-CR↓ [48] 34.98 0.9555 92.25 31.08 0.9136 86.93 27.79 0.8886 82.43 30.47 0.8965 84.07
ProgDownLite↓ (proposed) 34.98 0.9556 92.27 31.09 0.9137 86.93 27.79 0.8887 82.46 30.47 0.8966 84.10

4×

Lanczos↓ 28.79 0.8427 63.15 26.08 0.7445 53.49 23.31 0.6979 44.80 26.14 0.7100 48.76
DPID↓ [46] 28.36 0.8382 49.10 25.75 0.7418 40.02 23.00 0.6961 30.22 25.84 0.7088 36.01
𝐿0-regularized↓ [47] 28.05 0.8203 47.12 25.68 0.7259 39.07 23.08 0.6859 31.05 25.79 0.6885 33.54
CNN-CR↓ [48] 29.15 0.8552 68.85 26.22 0.7594 55.12 23.48 0.7151 45.70 26.24 0.7252 48.76
ProgDownLite↓ (proposed) 29.26 0.8582 71.35 26.39 0.7667 60.53 23.59 0.7212 52.43 26.40 0.7338 56.10
w
o

i
a
n
R
t
m
f

f
i
q
r
t
f
o
c
i
r
t
V

4

d
r
u
W
f
t
w
b
l
m
a
m
t

e
e

Table 2
Summary of the tested datasets.

Dataset (Acronym) # Vid. Reso. FPS Sec. Public?

Xiph.org (Xiph) 24 1080p 25 – 50 8 – 44 Yes
Ultra Video Group (UVG) 7 1080p 120 2.5 – 5 Yes
Netflix titles (NFLX) 68 1080p 30 ∼ 5 No

resizing algorithms in ffmpeg. The Adam solver [56] was used to
optimize the networks, with parameters (𝛽1, 𝛽2) = (0.9, 0.999) and a
batch size of 16. The networks were trained on 500K iterations of back-
propagation, using a learning rate that was fixed at 1𝑒 − 4. All of the
models were trained using NVIDIA Tesla K80 GPU cards.

We used DIV2K [57], an image dataset consisting of 1000 very high
quality pictures stored in uncompressed format, as training data. This
dataset was originally designed for studying image super-resolution
problems. All of the images in it have 2K pixels along either the
vertical or horizontal axis. The training images were randomly cropped
to 𝑀⌊

256
𝑀 ⌋ × 𝑀⌊

256
𝑀 ⌋, which is divisible by the scale factor 𝑀 . No

ugmentation was applied on the training data.

. Experiments and analysis

.1. Quantitative comparison on image dataset

As a preliminary evaluation, we measured the reconstruction ability
f the compared image downscaling models on four SR benchmark im-
ge datasets: Set5 [58], Set14 [59], Urban100 [60] and BSDS100 [61].
sing the same settings as in [48], both CNN-based models were trained
sing a bicubic upsampler against mean squared error (MSE) loss. Ta-
le 1 tabulates the reconstruction quality as measured by three different
erception-based picture quality models. The first thing to notice is that
PID [46] and the 𝐿0-regularized algorithm [47] performed far below
esired levels. It may also be observed that CNN-CR and ProgDownLite
elivered similar levels of performance at the 2× scale. However, at
he larger scale (4×), the reconstruction quality of CNN-CR was much
orse than that of ProgDownLite, providing evidence of the efficacy of

he progressive architecture. In addition to reconstruction quality, it
hould also be noted that CNN-CR is not applicable to non-integer scale
actors, such as 1.5× and 2.5× downscaling.

.2. Evaluation experiments

Evaluation Dataset To evaluate our method under the adaptive
ideo streaming scenario, we collected 31 test video contents hav-
ng 1080p resolution, that were obtained from two publicly available
ources commonly used for evaluating video codecs, the Xiph Video
est Media3 and Ultra Video Group (UVG) datasets [62]. We also

3 We used 24 test videos of 1080p resolution from the ‘‘HD Content and
bove’’ category of https://media.xiph.org/video/derf/.
6

c

utilized 68 representative Full High Definition (FHD) video sources
from amongst the licensed movies and TV shows in the Netflix catalog,
yielding more diverse and realistic contents. All of the test sequences
were converted to YUV420 (YCbCr color space with 4:2:0 sampling)
8-bit format prior to evaluation. The lengths of the sequences varied
between 120 to 1335 frames. Sequences which were originally longer

ere clipped to less than 750 frames. The test datasets that we relied
n are summarized in Table 2.
Input format transformation We integrated the trained networks

nto a video encoding pipeline. Since TensorFlow does not provide
YUV-friendly input/output interface, the videos were input to the

etwork in RGB888 format. Each YUV420 input was converted to
GB888. Following resolution reduction, the video frames produced by

he downsampling network were converted back to their original for-
at (YUV420) prior to encoding. We refer the reader to the Appendix

or details regarding ffmpeg commands for format conversion.
Evaluation Methodology We measured the objective coding ef-

iciency of each downsampling model within the same video encod-
ng pipeline using the Bjøntegaard-Delta bitrate (BD-rate) [63], which
uantifies average differences in bitrate at a same distortion level
elative to another reference encode. To calculate BD-rate, we encoded
he down-sampled videos by H.264 (x264) at 15 different QPs, ranging
rom 17 to 46. Then, the encoded videos were up-scaled back to their
riginal resolutions. The performances of all of the downsamplers were
ompared to the same baseline — the Lanczos downsampling algorithm
mplemented in ffmpeg. A negative BD-rate means that the bitrate was
educed as compared with the baseline. Lastly, the distortion levels
hat were used for BD-rate calculation were quantified using PSNR and
MAF,4 all calculated on the luma channel.

.3. Overall comparison

The main performance results are given in Table 3, with respect to
ifferent objective video quality assessment models. We report the BD-
ate changes obtained relative to the baseline (Lanczos downsampling
nder the same conditions), averaged over all the videos in the test set.
e comprehensively evaluated the proposed downsampling networks

or various scale factors that are commonly used in practice, using
hree different upsampling algorithms. From the results in the table,
e may draw a number of conclusions. First, the results show that
icubic interpolation yielded worse results than did Lanczos interpo-
ation. On the other hand, performance of the learned downsampling
odels surpassed those of both of the two conventional downsampling

lgorithms. Indeed, significant BD-rate reductions were obtained in
any cases. The progressive models generally competed quite well with

he CNN-CR model at integer scale factors, but performed significantly

4 We used VMAF 0.6.2 with the ‘‘no enhancement gain’’ setting [64]
nabled in our evaluation. This model penalizes overly amplified image
nhancements (such as sharpening or contrasting), yielding fairer results when
omparing codecs.

https://media.xiph.org/video/derf/

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.

b
o
a
b
o
b
c
o
b
r
t
D
I
t
o
c
T
a

s
e
u
r
s
r
l
r

4

w
r
o
t
E
D

Table 3
Per-scale performance comparison of downsampling algorithms when used in an H.264 encoding pipeline on the combined Xiph + UVG dataset and on the Netflix (NFLX) dataset.
Each cell shows the average change of BD-rate expressed as percent. The baseline comparison is against Lanczos downsampling using the same encoding recipe. Smaller or negative
values indicate better coding efficiency. A ‘‘—’’ in a cell indicates the result is not applicable to the model.

Scale Downsampler Xiph + UVG NFLX

bilinear↑ bicubic↑ Lanczos↑ bilinear↑ bicubic↑ Lanczos↑

PSNR VMAF PSNR VMAF PSNR VMAF PSNR VMAF PSNR VMAF PSNR VMAF

1.5×

bicubic↓ +5.84 +1.94 +2.08 +1.30 +1.43 +1.07 +2.77 +1.51 +1.75 +1.45 +1.22 +1.25
CNN-CR↓ [48] — — — — — — — — — — — —
ProgDown↓ (proposed) −5.73 +0.18 −1.34 +0.14 +0.23 +0.74 −3.85 −2.14 −1.89 −1.70 −0.64 −1.08
ProgDownLite↓ (proposed) −5.81 −0.31 −1.30 −0.10 +0.30 +0.51 −3.75 −2.30 −1.75 −1.76 −0.47 −1.14

2×

bicubic↓ +8.13 +4.66 +3.31 +3.66 +2.62 +3.26 +3.88 +3.61 +2.69 +3.42 +2.05 +3.04
CNN-CR↓ [48] −5.71 −2.01 −2.96 −1.79 −0.90 −0.89 −6.00 −4.55 −3.43 −4.02 −1.55 −3.11
ProgDown↓ (proposed) −5.69 −2.00 −2.93 −1.79 −0.87 −0.89 −6.01 −4.58 −3.43 −4.06 −1.55 −3.14
ProgDownLite↓ (proposed) −5.76 −2.03 −2.98 −1.80 −1.00 +0.66 −6.02 −4.60 −3.42 −4.06 −1.52 −3.13

2.5×

bicubic↓ +9.02 +9.12 +6.07 +7.59 +3.03 +6.00 +4.31 +6.46 +3.11 +5.66 +2.48 +5.18
CNN-CR↓ [48] — — — — — — — — — — — —
ProgDown↓ (proposed) −10.40 −6.96 −3.83 −5.58 −1.90 −4.22 −6.14 −7.59 −3.91 −6.74 −2.08 −5.39
ProgDownLite↓ (proposed) −10.41 −6.76 −3.84 −5.50 −1.92 −4.14 −6.12 −7.40 −3.82 −6.57 −2.01 −5.23

3×

bicubic↓ +8.05 +11.57 +6.39 +9.38 +3.24 +7.50 +4.54 +8.93 +3.74 +7.58 +3.27 +7.02
CNN-CR↓ [48] −6.19 −11.44 −4.44 −9.69 −2.42 −8.13 −6.10 −10.92 −4.55 −9.63 −2.70 −8.17
ProgDown↓ (proposed) −6.25 −11.95 −4.44 −10.00 −2.41 −8.42 −6.22 −11.48 −4.62 −10.02 −2.75 −8.54
ProgDownLite↓ (proposed) −6.21 −12.01 −4.39 −10.03 −2.35 −8.43 −6.17 −11.48 −4.54 −9.99 −2.67 −8.51

4×

bicubic↓ +4.80 +22.00 +3.53 +16.31 +3.07 +14.12 +4.87 +15.67 +3.63 +13.07 +3.14 +11.60
CNN-CR↓ [48] −6.98 −19.91 −3.80 −15.95 −1.17 −14.16 −6.79 −17.82 −4.00 −14.92 −1.73 −13.23
ProgDown↓ (proposed) −7.19 −17.71 −5.46 −14.66 −3.98 −13.28 −6.79 −14.91 −5.25 −12.90 −3.98 −11.64
ProgDownLite↓ (proposed) −7.15 −17.66 −5.28 −14.03 −3.84 −12.83 −6.87 −14.99 −5.24 −12.72 −3.98 −11.44

5×

bicubic↓ +9.09 +52.85 +6.99 +30.57 +3.53 +22.93 +4.88 +22.24 +3.88 +18.86 +3.50 +17.04
CNN-CR↓ [48] −5.71 −33.51 −3.04 −27.11 +0.28 −22.43 −5.45 −25.60 −2.92 −23.05 −0.43 −19.95
ProgDown↓ (proposed) −7.10 −31.81 −5.47 −27.19 −3.89 −23.85 −6.98 −23.01 −5.54 −21.50 −4.11 −19.37
ProgDownLite↓ (proposed) −7.05 −31.99 −5.42 −27.34 −3.81 −24.04 −7.11 −23.50 −5.55 −21.87 −4.08 −19.73
F
h
p
A
b

t
p
r

etter when 𝑀 was large. We also obtained reasonable improvements
f BD-rates when 𝑀 was not an integer, whereas CNN-CR was not
pplicable to these cases. It may also be observed that, when using
icubic upsampling at 𝑀 = 5 on the public test set, the PSNR BD-rate
btained using CNN-CR was worse than the baseline scenario, possibly
ecause it was trained without considering encoding effects, such as
ompression distortions and rate consumption, hence resulting in a sub-
ptimal result. Conversely, our two proposed models outperformed the
aseline by saving more than 3.8% of bitrate, likely due to the better
econstructions yielded by the progressive architecture. Finally, given
he nearly identical performance attained by the ProgDown and Prog-
ownLite architectures, we recommend using the ProgDownLite model.

t is less computationally complex under non-integer scale factors, due
o the elegant way it handles fractional resizing. Another interesting
bservation that can be made is that the CNN-based models delivered
oding gains with respect to all of the video quality measurements.
his suggests that the encoding pipeline is not only more efficient in
pixel-wise (PSNR) sense, but also perceptually optimized.

Despite training with a fixed bicubic upsampler, the models were
till able to generalize well to different upsampling algorithms. How-
ver, more significant BD-rate improvements were obtained on bilinear
psampling, which usually results in worse quality, leaving greater
oom for improvement of objective video quality. We have also ob-
erved very similar trends using more sophisticated upscaling algo-
ithms, including Lanczos. The performance results, however, reveal
ess significant improvements than bicubic perhaps due to the counter
eason to bilinear upsampling.

.4. Optimization on multi-resolution representation

In addition to analyzing model performance at single scale factors,
e investigated the effects of combining encoding results over multi-

esolutions to simulate the realistic mechanism of a chunk level R–D
ptimization. In this scenario, a source video was first downscaled
o 6 different resolutions (720p, 540p, 432p, 360p, 270p, and 216p).
ach resolution was further encoded using various QPs, yielding 6 R–
curves. We followed the procedure described in [65] to construct
7

a

ig. 8. An example of constructing a multiple resolution representation and convex
ull of R–D curves on the tractor sequence using (a) Lanczos interpolation and (b) the
roposed ProgDownLite model. (c) compares the convex hull R–D curves in (a) and (b).
t each resolution, each video was encoded using x264 and upsampled back using
icubic interpolation.

he convex hull of the 6 R–D curves, and from it determined the R–D
oints to stream. An example of generating convex hulls from multiple
epresentations in resolution is demonstrated in Fig. 8. In this case,
BD-rate improvement of −3.11% was achieved when comparing the

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.
Table 4
BD-rate change (in percentage) obtained by applying a learned downsampler in several encoding pipelines relative to traditional
interpolation methods on the Xiph + UVG dataset and on the Netflix (NFLX) dataset.

Upsampler Codec Xiph + UVG NFLX

PSNR SSIM VMAF PSNR SSIM VMAF

bilinear↑

H.264 −3.47 −3.98 −2.78 −3.90 −3.37 −4.79
HEVC −5.36 −3.87 −2.48 −4.52 −2.55 −3.33
VP9 −4.81 −3.49 −3.26 −4.39 −2.11 −4.02
AV1 −5.72 −5.13 −2.52 −4.50 −2.93 −4.05

bicubic↑

H.264 −1.40 −2.98 −3.09 −2.09 −2.14 −5.25
HEVC −3.11 −3.00 −3.04 −2.69 −1.67 −4.23
VP9 −2.43 −2.50 −3.22 −2.27 −0.88 −4.25
AV1 −3.41 −4.34 −2.70 −2.91 −1.89 −4.35

Lanczos↑

H.264 +0.20 −2.06 −2.74 −0.59 −1.08 −5.08
HEVC −1.21 −2.34 −2.91 −1.18 −0.83 −4.23
VP9 −0.68 −1.62 −3.13 −0.72 −0.15 −4.04
AV1 −1.58 −3.57 −2.41 −1.44 −1.04 −4.04
convex hulls obtained from the ProgDownLite models (Fig. 8(a)) against
those from Lanczos (Fig. 8(b)).

In addition to H.264, we also performed the same evaluation on
more advanced video codecs, HEVC (HM 16.22), VP9 (libvpx 1.8.1),
and AV1 (libaom 2.0.0), with the BD-rate results reported in Table 4.
The experimental results clearly show that our models still significantly
outperformed Lanczos downsampling, when jointly utilized to optimize
R–D performance with respect to different target quality models. Fur-
thermore, they generalized well among the different codec standards,
perhaps due to not including compression in training. Surprisingly, as
may be observed, the attained BD-rates were generally better when
tested on more sophisticated codecs, such as HEVC or AV1. This is likely
because fewer compression artifacts arise when using an advanced
video codec at a given bitrate.

4.5. Which upsampler should be used during training?

We studied the design choice of training methodology by comparing
the ProgDown models trained with bilinear and bicubic upsampling.
We denote these two models as ProgDown-BL and ProgDown-BC, re-
spectively. To exclude the factor of video encoding, we only measured
the reconstruction performance of different downsampling–upsampling
combinations, with results reported in Table 5. The first thing to notice
is the performance attained by each testing upsampler. As expected, the
best performances were achieved when using the same upsampler in
training and testing. Despite being the top-performer when testing with
bilinear, the ProgDown-BL model failed on many cases when testing
with bicubic. One counter-intuitive example is that, applying bicu-
bic upsampling on frames downsampled by ProgDown-BL performed
worse than using bilinear upsampling, which suggests the possibility
of overfitting. In addition, ProgDown-BL was worse than the Lanczos
baseline when measured against PSNR, making it hard to justify its
use in practical applications. By contrast, models trained with bicubic
upsampling (ProgDown-BC) transferred very well to both upsamplers,
gaining more than 0.5 dB over Lanczos in many cases. Therefore, we
argue that using bicubic interpolation in training appears to yield better
generalizability.

Moreover, Fig. 9 shows a visual comparison of training strategies.
We downsampled the source frame by 2× using different downsampling
models, then upsampled back to the original resolution via bicubic
interpolation. It may be observed that ProgDown-BC (4th column) ef-
fectively learned a better low-resolution representation than did the
Lanczos method, leaving textures and edges well preserved after the
upsampling process. However, close examination reveals that Prog-
Down-BL (3rd column) tended to over-sharpen textures as compared to
the pristine source, which could explain its reduced objective perfor-
mance. In fact, the results from Table 5 and Fig. 9 can be understood by
the nature of the upsampling algorithms. Simple bilinear averaging is
low-pass, hence causes blur. Thus, the network trained with respect to
bilinear upsampling learns to preserve details to compensate for these
smoothing effects.
8

Table 5
Comparison of models trained with different upsamplers on the UVG dataset. Each cell
shows the average reconstructed video quality, expressed as PSNR / SSIM / VMAF. The
worst performance is highlighted in red boldface.

Scale Downsampler Test with bilinear↑ Test with bicubic↑

2×
Lanczos↓ 41.015 /0.9672 /86.497 42.740 / 0.9739 / 95.468
ProgDown-BL↓ 43.366 / 0.9769 / 96.406 41.026 /0.9697 /94.376
ProgDown-BC↓ 42.036 / 0.9729 / 88.345 43.323 / 0.9739 / 95.690

3×
Lanczos↓ 37.693 /0.9397 /76.731 38.828 /0.9481 /88.397
ProgDown-BL↓ 38.738 / 0.9490 / 90.827 38.745 / 0.9510 / 89.806
ProgDown-BC↓ 38.401 / 0.9470 / 81.346 39.399 / 0.9529 / 92.210

5×
Lanczos↓ 33.792 /0.8848 /47.233 34.685 /0.8952 /64.576
ProgDown-BL↓ 34.787 / 0.8974 / 72.677 34.501 / 0.8992 / 71.327
ProgDown-BC↓ 34.448 / 0.8948 / 57.678 35.149 / 0.9021 / 75.086

Fig. 9. Visual comparison of 2× models trained with different upsamplers on HoneyBee
of the UVG dataset. All the downsampled frames were upsampled by 2× with bicubic
interpolation before display.

4.6. Determining the weight on guided loss

As described in Section 3.5, we use an additional guided loss func-
tion to prevent corner cases where artifacts can arise. To determine the

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.

1

r
t

Fig. 10. Averaged BD-rate of ProgDownLite for 4× and 5× downsampling as a function
of the weight parameter 𝜆.

Table 6
Runtime comparison of downsampling algorithms using different scale factors. All
computational speeds are given in frames per second (fps).

Model/Factor 1.5× 2× 2.5× 3× 4× 5×

ffmpeg bicubic↓ CPU 259.7 354.3 328.6 385.1 452.5 483.2
ffmpeg Lanczos↓ CPU 167.9 229.5 266.1 286.2 338.8 383.4

CNN-CR↓ [48] CPU – 1.073 – 1.492 1.717 1.839
GPU – 1.379 – 1.692 1.767 1.849

ProgDown↓ CPU 0.347 0.827 0.379 0.909 0.968 0.939
GPU 0.761 1.250 0.836 1.426 1.452 1.522

ProgDownLite↓ CPU 0.638 0.758 0.833 0.853 0.915 0.943
GPU 1.047 1.253 1.376 1.422 1.492 1.519

weight on the guided loss in (10), we uniformly sampled ten values
ranging along a log scale from 0 to 1010. Fig. 10 plots the averaged BD-
rate on a validation set as a function of the weight parameter 𝜆. Larger
values of 𝜆 drives the model towards Lanczos downsampling, yielding
less BD-rate improvement. Overall, we found that fixing 𝜆 = 3 yielded
the lowest SSIM/VMAF BD-rate, while maintaining the same level of
PSNR BD-rate, thereby preserving both objective (metric) performance
while mitigating perceptual artifacts.

4.7. Execution time

The execution times of the various downscaling models at different
scale factors are summarized in Table 6. The results were calculated by
averaging the runtime (in terms of fps) over all 7 1080p test videos from
the UVG dataset on the same machine equipped with 16 logical Intel
Xeon Platinum 8259CL CPUs@2.50 GHz, 128G RAM, and an NVIDIA
Tesla K80 GPU (12G Memory version). We used the median value from
5 runs for each content. Note that the pixel format conversion and
model loading times are included for all of the CNN-based models.
From Table 6, it may be observed that the compute speed increased
with downsampling, since fewer pixels were processed. As comparing
with the ProgDown model, the complexity of the ProgDownLite model
was significantly less at fractional scaling factors, since the network
does not increase resolution. Of course, the runtimes of the deep models
would be significantly reduced if implemented on a GPU.

Since we used the publicly-available precompiled version of Tensor-
flow, which may not be optimal on every machine, we would expect
further accelerations to be possible by re-compiling with a low-level
instruction set, or by utilizing optimizers such as Intel’s Math Kernel
Library. In addition to inferencing speed, integrating the trained CNN
models into optimized multimedia pipelines, such as ffmpeg, could
reduce end-to-end execution time. It should also be noted that, even
given the acceleration of modern GPUs, the CNN-based downsampling
models are still too slow for high-throughput applications, such as live
video streaming. However, these processing speeds are still acceptable
for most non-realtime HTTP Adaptive Streaming applications.
9

Table 7
Summary of the subjective study design.

Group A Group B

Contents 8 8
Subjects 39 39
Encoding Resolutions {720p, 432p, 360p}/{540p, 432p, 360p}
Encoding QPs ∼ {80, 105, 130}

Comparisons (sess. 1) 48 48
Comparisons (sess. 2) 60 60
Comparisons (total) 108 108

4.8. Subjective study and analysis

Since humans are the ultimate receiver of streamed videos, we
conducted a human subject study to better understand perceptual
preferences of the different downsampling algorithms. We selected
16 source videos from the Netflix open content5 library, as well as
from licensed Netflix titles. The source videos exhibit a variety of
characteristics, such as different amounts of local motion, dynamic
textures, simple/complex camera movements, and so on. None of the
videos contain audio components. Ten of the videos are of resolu-
tion 3840 × 2160, while the remaining six contents are of resolution
1920 × 1080. We divided 74 participants into two groups, and assigned
8 distinct video contents to each group. Each content was downsampled
to three encoding resolutions, then encoded at three different bitrates
by VP9.6 To fairly compare videos at equal bitrates, we encoded the
videos using a 2D grid of QP values (QP𝑃𝑟𝑜𝑔𝐷𝑜𝑤𝑛𝐿𝑖𝑡𝑒,QPLanczos) ∈ {𝑘, 𝑘±
,… , 𝑘±5}×{𝑘, 𝑘±1,… , 𝑘±10}, where 𝑘 ∈ {80, 105, 130}. For each value

of 𝑘, we selected QP pairs that minimized percent bitrate differences,
while guaranteeing that ProgDownLite would always associated with
a smaller bitrate than Lanczos. Among all the distorted video pairs,
we obtained a maximum bitrate deviation of 1.12% between two
downsamplers.

As summarized in Table 7, we obtained 9 different scaling-
compression distorted versions of that particular content. To test the
model generalizability to different upsamplers, we randomly applied ei-
ther bicubic interpolation or a deep super-resolution model, VDSR [42],
to each content. We followed standard practice to divide the subjective
study into several separate viewing sessions, to avoid visual fatigue.
Each subject’s sessions were separated by at least 24 hours for the same
eason. After viewing each video pair, a subject was asked to select
he one they preferred. Among the 74 recruited volunteer participants,

about 51% were somewhat knowledgeable about image/video process-
ing, while the others were naive. In sum, we asked each participant to
compare 72 pairs of videos divided into two sessions, each of which
lasted about 20 minutes.

Since compressed videos obtained using different downsampling
algorithms often have subtle perceptual differences at similar bitrates, it
can be easier for humans to make comparisons between simultaneously
displayed videos. Therefore, we adopted a double stimulus paired com-
parison method instead of the Absolute Category Rating (ACR) protocol.
The videos processed by Lanczos and ProgDownLite were cropped to
resolution 960 × 1080 and synchronously played on the same monitor
so that the subjects could view and compare them. We designed a web-
based user interface to carry out the human study, whereby participants
could easily compare pairs of videos and render relative quality deci-
sions. To obtain the human opinion scores, a straightforward strategy
is to deploy the Bradley–Terry (BT) model [66]. For each video content
impaired to create 𝑑 different distorted versions, one can estimate the
Mean Opinion Score (MOS) from

(𝑑
2

)

comparisons. However, the large
number of comparisons needed by such a method would limit the

5 https://opencontent.netflix.com/home
6 We used the proprietary Eve-VP9 encoder in the subjective study.

https://opencontent.netflix.com/home

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.

f
b

u
P
r

Fig. 11. Subjective performance of average win rate of ProgDownLite (with 95% con-
idence intervals) for each content. Blue: contents upsampled by bicubic interpolation;
rown: contents upsampled by VDSR.

Fig. 12. Subjective performance of average win rate of ProgDownLite with respect to
(a) encoding resolution (b) encoding QP. The error bars indicate the 95% confidence
intervals.

diversity of contents and distortions in a practical study. In light of
this, we chose to report the win rate of the head-to-head comparisons at
the same bitrate at which users preferred our method over the Lanczos
baseline.

Given the collected subjective comparisons, we analyzed the results
by computing the percentage of subjects preferring ProgDownLite over
Lanczos, and plotted the results with respect to each content in Fig. 11.
On average, ProgDownLite was preferred by 76.8% of the subjects. It
may be observed that, on some specific video contents, ProgDownLite
only obtained around 66% of the votes, indicating that performance
close to that of Lanczos. This could be due to temporal masking effects
arised from large motions or camera panning. It is also interesting
to note that our model still delivered superior performance on the
2160p contents, although the low-resolution encodings were upsam-
pled and displayed at 1080p in our experiment. We have also observed
similar performance of the two different upsampling models, bicubic
interpolation and VDSR, further validating the model generalizability.

Towards better understanding the downsampling models, we also
analyzed their performances against encoding resolution and QP, as
shown in Fig. 12. The lowest performance occurred on the 720p
encodings (Fig. 12(a)). This could be because both distorted videos
were of very high quality, whereby some subjects may have been
unable to distinguish differences in subjective quality. There was one
anomaly on the other end, where the win rate of ProgDownLite dropped
drastically at 360p. When interviewing the subjects after finishing two
sessions, we learned that some disliked the jaggedness artifacts that
occasionally appeared on the edges of objects in videos encoded at 360p
using ProgDownLite, although they were sharper than those produced
sing Lanczos. Interestingly, Fig. 12(b) shows that the win rate of
rogDownLite slightly decreased as the QP was raised. Overall, these
esults suggest that ProgDownLite is able to yield favorable perceptual
10

video quality relative to the widely deployed Lanczos algorithm. r
Table 8
Outcomes of significance tests of the relative performances of ProgDownLite against
Lanczos interpolation, on each of 16 video contents encoded at three QP/resolutions
(see text in Section 4.9).

QP / Res. 720p / 540p 432p 360p

80 1111111 -111 -1111 1111111111111111 -1111111111111 -1
105 11111 -1 -11111 -11 111111 - -111 - -111 -11111111 -111111
130 1 -11 -1111111 - -11 111111 - -111 - -111 -111111 -11111 -11

4.9. Significance test

To evaluate whether our model performed significantly better than
Lanczos, we performed a 95% two-tailed z-test with the Wilson score
interval [67] on the votes obtained from each distorted video (also
known as inference for one proportion). For each video pair, we tested
whether the win rate of ProgDownLite was significantly different from
the null hypothesis H0 at a level 𝑝̂ = 0.5. Table 8 shows the results
of the statistical significance tests. Each cell in the table consists of 16
symbols, corresponding to the 16 selected video contents. A value of
‘1’ in the table indicates that ProgDownLite was statistically superior to
Lanczos, while a value of ‘0’ means the opposite. A value of ‘-’ indicates
there was no statistical difference between the two downsampling
algorithms. From the results shown in the Table, it may be observed
that ProgDownLite statistically surpassed Lanczos on more than 83% of
the cases considered.

5. Conclusion and future work

In this paper, we proposed a progressive residual learning net-
work architecture for video downsampling in streaming. In particular,
we explored two different ways to address non-integer scale factors,
resulting in models called ProgDown and ProgDownLite.7 We believe
that the ideas we discovered in this work can applied to other image
transformation problems. For instance, within the ProgDownLite model,
we developed a new convolutional block that allows fractional resizing,
which is simple and can be effectively implemented. With proper mod-
ifications, it should also be applicable to super-resolution problems.
To achieve better performance and faster processing speed, different
machine learning models, such as GANs [69] and Transformers [70]
could be used to define resizing modules.

The current training framework, which minimizes the reconstruc-
tion error, is not perfect. We have observed that CNN-downsampled
videos generally exhibit more details, enlarging bit consumption at
similar QP values. This suggests that there is room for improving rate–
distortion tradeoffs, perhaps by applying a ‘‘rate term’’ in the loss
function. Our subjective investigation in Section 4.6 also indicates that
widely-used VQA models are not capable of capturing temporal flicker
artifacts. By designing new features, it is possible to achieve more
accurate video quality prediction and further improve loss functions
for training. Looking further ahead, we plan to extend the concept of
learned preprocessing to other scenarios, such as mitigating banding
artifacts [71] and high bit-depth HDR pipelines. We are also aware
of the emergence of consumer televisions having more sophisticated
upsampling algorithms. Therefore, verifying the efficacy of approaches
like these on emerging high-end devices will be an important task.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

7 The ProgDownLite model has been further optimized and is currently
unning at scale on the Netflix service [68].

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.
Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported by Netflix and by grant number 2019844
for the National Science Foundation AI Institute for Foundations of
Machine Learning (IFML). The authors thank the Video Algorithms
team at Netflix for providing fruitful feedback on this work, and the
Machine Learning Infrastructure team at Netflix for providing technical
support on Metaflow (https://metaflow.org/). The authors would also
like to thank all the volunteers who took part in the subjective study.
The human study was conducted under the approval of the Institutional
Review Board (IRB) protocol 2007-11-0066.

Appendix

In Section 4.2, we use the following ffmpeg commands for conver-
sion between YUV420 and RGB888 with minimal introduced numerical
error:

YUV to RGB conversion. To mitigate the reconstruction error in
the luma channel, the source video frames were first converted to
YUV444 format

ffmpeg -s WxH -pix_fmt yuv420p -i i420.yuv \
-pix_fmt yuv444p i444.yuv

Then, the intermediate i444.yuv was converted to RGB888 by

ffmpeg -s WxH -pix_fmt yuvj444p -i i444.yuv \

where i420.yuv and i888%08d.png are source videos in YUV420
and RGB888 format (input to the downsampling models), respectively,
and W and H are the dimensions of the source video.

RGB to YUV conversion. The downsampled video frames
cnn%08d.png were converted back to their original format (YUV420)
prior to encoding via

ffmpeg -i cnn%08d.png -pix_fmt yuvj420p \
o420.yuv

where o420.yuv is the downsampled video in YUV420 format. We
set -pix_fmt to yuvj444p / yuvj420p in order to avoid the
conversion between limited range and full range.

References

[1] C. Chen, Y.-C. Lin, S. Benting, A. Kokaram, Optimized transcoding for large
scale adaptive streaming using playback statistics, in: Proc. IEEE Int. Conf. Image
Process., 2018, pp. 3269–3273.

[2] I. Katsavounidis, Dynamic optimizer – a perceptual video encoding
optimization framework, 2018, The NETFLIX Tech Blog. URL https:
//netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-
optimization-framework-e19f1e3a277f.

[3] P.-H. Wu, V. Kondratenko, I. Katsavounidis, Fast encoding parameter selection
for convex hull video encoding, in: Proc. SPIE Applications Digital Image Process.
XLIII, 2020.

[4] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: From
error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004)
600–612.

[5] H.R. Sheikh, A.C. Bovik, Image information and visual quality, IEEE Trans. Image
Process. 15 (2) (2006) 430–444.

[6] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, M. Manohara, Toward a
practical perceptual video quality metric, 2016, The NETFLIX Tech Blog. URL
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-
653f208b9652.

[7] H.C. Burger, C.J. Schuler, S. Harmeling, Image denoising: Can plain neural
networks compete with BM3D? in: Proc. IEEE Conf. Comput. Vision Pattern
Recog., 2012, pp. 2392–2399.

[8] J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end optimized image compression,
in: Proc. Int. Conf. Learn. Represent., 2017, pp. 1–27.
11
[9] S. Paul, A. Norkin, A.C. Bovik, Speeding up VP9 intra encoder with hierarchical
deep learning-based partition prediction, IEEE Trans. Image Process. 29 (2020)
8134–8148.

[10] L.-H. Chen, C.G. Bampis, Z. Li, C. Chen, A.C. Bovik, Convolutional block design
for learned fractional downsampling, in: Proc. IEEE Asilomar Conf. on Signals,
Syst., and Comput., 2022, pp. 640–644.

[11] Apple, HLS authoring specification for apple devices, 2017.
[12] A. Aaron, Z. Li, M. Manohara, J.D. Cock, D. Ronca, Per-title encode optimiza-

tion, 2015, The NETFLIX Tech Blog. URL https://netflixtechblog.com/per-title-
encode-optimization-7e99442b62a2.

[13] M. Bhat, J.-M. Thiesse, P.L. Callet, Can small be beautiful?: Assessing image
resolution requirements for mobile tv, in: Proc. 13th Annu. ACM Int. Conf.
Multimedia, 2005, pp. 829–838.

[14] G. Cermak, M. Pinson, S. Wolf, The relationship among video quality, screen
resolution, and bit rate, IEEE Trans Broadcast. 57 (2) (2011) 258–262.

[15] G. Georgis, G. Lentaris, D. Reisis, Reduced complexity superresolution for low-
bitrate video compression, IEEE Trans. Circuits Syst. Video Technol. 26 (2)
(2016) 332–345.

[16] L. Toni, R. Aparicio-Pardo, K. Pires, G. Simon, A. Blanc, P. Frossard, Optimal
selection of adaptive streaming representations, ACM Trans. Multimedia Comput.
Commun. Appl. 11 (2s) (2015) 1–26.

[17] C. Li, L. Toni, P. Frossard, H. Xiong, J. Zou, Complexity constrained represen-
tation selection for dynamic adaptive streaming, in: Proc. IEEE Visual Commun.
Image Process., 2016.

[18] Y. Sani, A. Mauthe, C. Edwards, Adaptive bitrate selection: A survey, IEEE
Commun. Surv. Tutor. 19 (4) (2017) 2985–3014.

[19] M. Shen, P. Xue, C. Wang, Down-sampling based video coding using super-
resolution technique, IEEE Trans. Circuits Syst. Video Technol. 21 (6) (2011)
755–765.

[20] X. Li, N. Oertel, A. Hutter, A. Kaup, Laplace distribution based Lagrangian rate
distortion optimization for hybrid video coding, IEEE Trans. Circuits Syst. Video
Technol. 19 (2) (2009) 193–205.

[21] M. Bhat, J.-M. Thiesse, P.L. Callet, A case study of machine learning classifiers
for real-time adaptive resolution prediction in video coding, in: Proc. IEEE Int.
Conf. Multimedia Expo, 2020, pp. 1–6.

[22] M. Afonso, F. Zhang, D.R. Bull, Video compression based on spatio-temporal
resolution adaptation, IEEE Trans. Circuits Syst. Video Technol. 29 (1) (2019)
275–280.

[23] F. Zhang, M. Afonso, D.R. Bull, ViSTRA2: Video coding using spatial resolution
and effective bit depth adaptation, Signal Process., Image Commun. 97 (2021)
116355.

[24] Z. Wang, A. Bovik, Mean squared error: Love it or leave it? A new look at signal
fidelity measures, IEEE Signal Process. Mag. 26 (1) (2009) 98–117.

[25] K. Seshadrinathan, A. Bovik, Motion tuned spatio-temporal quality assessment of
natural videos, IEEE Trans. Image Process. 19 (2) (2010) 335–350.

[26] P.V. Vu, C.T. Vu, D.M. Chandler, A spatiotemporal most-apparent-distortion
model for video quality assessment, in: Proc. IEEE Int. Conf. Image Process.,
2011, pp. 2505–2508.

[27] M. Pinson, S. Wolf, A new standardized method for objectively measuring video
quality, IEEE Trans. Broadcast. 50 (3) (2004) 312–322.

[28] S. Wolf, Variable frame delay (VFD) parameters for video quality measurements,
2011, U.S. Dept. Commer., Nat. Telecommun. Inf. Admin., Boulder, CO, USA,
Tech. Memo TM-11-475.

[29] M.H. Pinson, L.K. Choi, A.C. Bovik, Temporal video quality model accounting for
variable frame delay distortions, IEEE Trans. Broadcast. 60 (4) (2014) 637–649.

[30] A. Hekstra, J. Beerends, D. Ledermann, F. de Caluwe, S. Kohler, R. Koenen,
S. Rihs, M. Ehrsam, D. Schlauss, PVQM – A perceptual video quality measure,
Signal Process., Image Commun. 17 (10) (2002) 781–798.

[31] P. Tao, A.M. Eskicioglu, Video quality assesment using M-SVD, in: Proc. SPIE,
Vol. 6494, 2007, 649408.

[32] R. Soundararajan, A.C. Bovik, Video quality assessment by reduced reference
spatio-temporal entropic differencing, IEEE Trans. Circuits Syst. Video Technol.
23 (4) (2013) 684–694.

[33] Z. Tu, Y. Wang, N. Birkbeck, B. Adsumilli, A.C. Bovik, UGC-VQA: Benchmarking
blind video quality assessment for user generated content, IEEE Trans. Image
Process. 30 (2021) 4449–4464.

[34] Z. Wang, E.P. Simoncelli, A.C. Bovik, Multi-scale structural similarity for image
quality assessment, in: Proc. IEEE Asilomar Conf. on Signals, Syst., and Comput.,
2003, pp. 1398–1402.

[35] R. Keys, Cubic convolution interpolation for digital image processing, IEEE Trans.
Acoust. Speech Signal Process. 29 (6) (1981) 1153–1160.

[36] D. Glasner, S. Bagon, M. Irani, Super-resolution from a single image, in: Proc.
IEEE Int. Conf. Comput. Vision, 2009.

[37] A. Singh, N. Ahuja, Super-resolution using sub-band self-similarity, in: Proc. Asia
Conf. Comput. Vision, 2015, pp. 552–568.

[38] W. Freeman, T. Jones, E. Pasztor, Example-based super-resolution, IEEE Comput.
Graph. Appl. 22 (2) (2002) 56–65.

[39] K.I. Kim, Y. Kwon, Single-image super-resolution using sparse regression and
natural image prior, IEEE Trans. Pattern Anal. Mach. Intell. 32 (6) (2010)
1127–1133.

https://metaflow.org/
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb1
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb1
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb1
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb1
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb1
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb3
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb3
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb3
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb3
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb3
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb4
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb4
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb4
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb4
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb4
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb5
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb5
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb5
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb7
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb7
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb7
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb7
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb7
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb8
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb8
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb8
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb9
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb9
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb9
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb9
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb9
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb10
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb10
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb10
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb10
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb10
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb11
https://netflixtechblog.com/per-title-encode-optimization-7e99442b62a2
https://netflixtechblog.com/per-title-encode-optimization-7e99442b62a2
https://netflixtechblog.com/per-title-encode-optimization-7e99442b62a2
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb13
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb13
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb13
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb13
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb13
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb14
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb14
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb14
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb15
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb15
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb15
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb15
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb15
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb16
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb16
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb16
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb16
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb16
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb17
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb17
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb17
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb17
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb17
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb18
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb18
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb18
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb19
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb19
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb19
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb19
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb19
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb20
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb20
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb20
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb20
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb20
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb21
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb21
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb21
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb21
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb21
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb22
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb22
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb22
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb22
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb22
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb23
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb23
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb23
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb23
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb23
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb24
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb24
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb24
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb25
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb25
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb25
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb26
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb26
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb26
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb26
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb26
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb27
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb27
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb27
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb28
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb28
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb28
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb28
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb28
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb29
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb29
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb29
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb30
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb30
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb30
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb30
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb30
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb31
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb31
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb31
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb32
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb32
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb32
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb32
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb32
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb33
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb33
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb33
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb33
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb33
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb34
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb34
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb34
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb34
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb34
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb35
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb35
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb35
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb36
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb36
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb36
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb37
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb37
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb37
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb38
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb38
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb38
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb39
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb39
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb39
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb39
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb39

Signal Processing: Image Communication 128 (2024) 117172L.-H. Chen et al.
[40] C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep con-
volutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2) (2016)
295–307.

[41] Z. Wang, D. Liu, J. Yang, W. Han, T. Huang, Deep networks for image
super-resolution with sparse prior, in: Proc. IEEE Int. Conf. Comput. Vision, 2015.

[42] J. Kim, J.K. Lee, K.M. Lee, Accurate image super-resolution using very deep
convolutional networks, in: Proc. IEEE Conf. Comput. Vision Pattern Recog.,
2016, pp. 1646–1654.

[43] Y. Romano, J. Isidoro, P. Milanfar, RAISR: Rapid and accurate image super
resolution, IEEE Trans. Comput. Imaging 3 (1) (2017) 110–125.

[44] J. Kopf, A. Shamir, P. Peers, Content-adaptive image downscaling, ACM Trans.
Graph. 32 (6) (2013) 1–8.

[45] A.C. Öztireli, M. Gross, Perceptually based downscaling of images, ACM Trans.
Graph. 34 (4) (2015) 1–10.

[46] N. Weber, M. Waechter, S.C. Amend, S. Guthe, M. Goesele, Rapid,
detail-preserving image downscaling, ACM Trans. Graph. 35 (6) (2016) 1–6.

[47] J. Liu, S. He, R.W.H. Lau, 𝐿0 -Regularized image downscaling, IEEE Trans. Image
Process. 27 (3) (2018) 1076–1085.

[48] Y. Li, D. Liu, H. Li, L. Li, Z. Li, F. Wu, Learning a convolutional neural
network for image compact-resolution, IEEE Trans. Image Process. 28 (3) (2019)
1092–1107.

[49] H. Kim, M. Choi, B. Lim, K.M. Lee, Task-aware image downscaling, in: Proc. Eur.
Conf. Comput. Vision, 2018, pp. 399–414.

[50] W. Sun, Z. Chen, Learned image downscaling for upscaling using content
adaptive resampler, IEEE Trans. Image Process. 29 (2020) 4027–4040.

[51] Di Ma, F. Zhang, D.R. Bull, Video compression with low complexity CNN-based
spatial resolution adaptation, in: Proc. SPIE Applications Digital Image Process.
XLIII, 2020.

[52] E. Bourtsoulatze, A. Chadha, I. Fadeev, V. Giotsas, Y. Andreopoulos, Deep video
precoding, IEEE Trans. Circuits Syst. Video Technol. 30 (12) (2020) 4913–4928.

[53] H. Talebi, P. Milanfar, Learning to resize images for computer vision tasks, 2021,
arXiv preprint arXiv:2103.09950.

[54] A. Odena, V. Dumoulin, C. Olah, Deconvolution and checkerboard artifacts,
Distill (2016) URL https://distill.pub/2016/deconv-checkerboard/.

[55] M. Jaderberg, K. Simonyan, A. Zisserman, koray kavukcuoglu, Spatial trans-
former networks, in: Proc. Adv. Neural Inf. Process. Syst., 2015, pp.
2017–2025.

[56] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Proc. Int.
Conf. Learn. Represent., 2015, pp. 1–15.

[57] E. Agustsson, R. Timofte, NTIRE 2017 challenge on single image super-
resolution: Dataset and study, in: Proc. IEEE Conf. Comput. Vision Pattern Recog.
Workshops, IEEE, 2017, pp. 1122–1131.
12
[58] M. Bevilacqua, A. Roumy, C. Guillemot, M.L. Alberi-Morel, Combining full-
reference image visual quality metrics by neural network, in: Proc. Brit. Mach.
Vis. Conf., 2012, pp. 1–10.

[59] R. Zeyde, M. Elad, M. Protter, On single image scale-up using sparse-
representations, in: Proc. Int. Conf. Curves Surfaces, 2010, pp. 711–730.

[60] J.-B. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed
self-exemplars, in: Proc. IEEE Conf. Comput. Vision Pattern Recog., 2015, pp.
5197–5206.

[61] C.-Y. Yang, M.-H. Yang, Fast direct super-resolution by simple functions, in: Proc.
IEEE Int. Conf. Comput. Vis., 2013, pp. 561–568.

[62] A. Mercat, M. Viitanen, J. Vanne, UVG dataset: 50/120fps 4K sequences for video
codec analysis and development, in: Proc. ACM Multimedia Syst. Conf., 2020.

[63] G. Bjøntegaard, Calculation of average PSNR differences between RD-curves, in:
Document VCEG-M33, ITU-T Video Coding Experts Group (VCEG) Thirteenth
Meeting, 2001.

[64] Z. Li, K. Swanson, C. Bampis, LukaśǨrasula, A. Aaron, Toward a bet-
ter quality metric for the video community, 2020, The NETFLIX Tech
Blog. URL https://netflixtechblog.com/toward-a-better-quality-metric-for-the-
video-community-7ed94e752a30.

[65] A. Ortego, K. Ramchandran, Rate-distortion methods for image and video
compression, IEEE Signal Process. Mag. 15 (6) (1998) 23–50.

[66] R.A. Bradley, M.E. Terry, Rank analysis of incomplete block designs: The method
of paired comparisons, Biometrika 39 (3–4) (1952) 324–345.

[67] E. Wilson, Probable inference, the law of succession, and statistical inference, J.
Amer. Stat. Assoc. 22 (158) (1927) 209–212.

[68] C.G. Bampis, L.-H. Chen, Z. Li, For your eyes only: improving netflix
video quality with neural networks, 2022, The NETFLIX Tech Blog. URL
https://netflixtechblog.com/for-your-eyes-only-improving-netflix-video-quality-
with-neural-networks-5b8d032da09c.

[69] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, in: Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 2672–2680.

[70] A. Dosovitskiy, L. Beyer, A. Kolesnikov, X.Z. Dirk Weissenborn, M.D. Thomas Un-
terthiner, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image
is worth 16 × 16 words: Transformers for image recognition at scale, in: Proc.
Int. Conf. Learn. Represent., 2021, pp. 1–22.

[71] Z. Tu, J. Lin, Y. Wang, B. Adsumilli, A.C. Bovik, Adaptive debanding filter, IEEE
Signal Process. Lett. 27 (2020) 1715–1719.

http://refhub.elsevier.com/S0923-5965(24)00073-0/sb40
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb40
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb40
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb40
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb40
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb41
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb41
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb41
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb42
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb42
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb42
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb42
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb42
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb43
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb43
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb43
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb44
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb44
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb44
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb45
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb45
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb45
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb46
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb46
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb46
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb47
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb47
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb47
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb48
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb48
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb48
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb48
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb48
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb49
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb49
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb49
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb50
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb50
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb50
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb51
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb51
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb51
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb51
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb51
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb52
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb52
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb52
http://arxiv.org/abs/2103.09950
https://distill.pub/2016/deconv-checkerboard/
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb55
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb55
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb55
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb55
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb55
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb56
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb56
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb56
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb57
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb57
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb57
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb57
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb57
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb58
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb58
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb58
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb58
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb58
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb59
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb59
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb59
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb60
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb60
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb60
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb60
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb60
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb61
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb61
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb61
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb62
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb62
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb62
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb63
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb63
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb63
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb63
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb63
https://netflixtechblog.com/toward-a-better-quality-metric-for-the-video-community-7ed94e752a30
https://netflixtechblog.com/toward-a-better-quality-metric-for-the-video-community-7ed94e752a30
https://netflixtechblog.com/toward-a-better-quality-metric-for-the-video-community-7ed94e752a30
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb65
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb65
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb65
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb66
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb66
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb66
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb67
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb67
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb67
https://netflixtechblog.com/for-your-eyes-only-improving-netflix-video-quality-with-neural-networks-5b8d032da09c
https://netflixtechblog.com/for-your-eyes-only-improving-netflix-video-quality-with-neural-networks-5b8d032da09c
https://netflixtechblog.com/for-your-eyes-only-improving-netflix-video-quality-with-neural-networks-5b8d032da09c
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb69
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb69
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb69
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb69
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb69
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb70
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb70
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb70
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb70
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb70
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb70
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb70
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb71
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb71
http://refhub.elsevier.com/S0923-5965(24)00073-0/sb71

	Learned fractional downsampling network for adaptive video streaming
	Introduction
	Background
	Brief Overview of Adaptive Video Streaming
	Objective Video Quality Assessment Algorithms
	Resizing Algorithms

	Proposed Method
	Dealing with Fractional Scale Factors
	``Digital Signal Processing'' Approach
	Using a conv-resize block

	Proposed Progressive Network for Downsampling
	Visualization of Learned Residuals
	End-to-End Training Framework
	Loss Function
	Pixel-wise loss
	Guided loss

	Implementation and Training Details

	Experiments and Analysis
	Quantitative Comparison on Image Dataset
	Evaluation Experiments
	Overall Comparison
	Optimization on Multi-resolution Representation
	Which Upsampler Should be Used During Training?
	Determining the Weight on Guided Loss
	Execution Time
	Subjective Study and Analysis
	Significance Test

	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	References

