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Abstract—We propose a new model for no-reference video
quality assessment (VQA). Our approach uses a new idea of
highly-localized space-time (ST) slices called Space-Time Chips
(ST Chips). ST Chips are localized cuts of video data along
directions that implicitly capture motion. We use perceptually-
motivated bandpass and normalization models to first process
the video data, and then select oriented ST Chips based on how
closely they fit parametric models of natural video statistics. We
show that the parameters that describe these statistics can be
used to reliably predict the quality of videos, without the need
for a reference video. The proposed method implicitly models
ST video naturalness, and deviations from naturalness. We train
and test our model on several large VQA databases, and show
that our model achieves state-of-the-art performance at reduced
cost, without requiring motion computation.

Index Terms—Video quality assessment, natural video statis-
tics, human visual system

I. INTRODUCTION

V IDEO content continues to proliferate, already account-
ing for more than 70% of internet traffic, and projected

to exceed 82% of internet traffic by 2021. Live internet video
will account for 13 percent of Internet video traffic by 2021,
and is predicted to grow 15-fold from 2016 to 2021 [1].
Distortions can affect videos as they are captured, transmitted,
and received. The task of assessing the quality of a video in
the presence of distortions is thus an increasingly important
open problem. In most instances in this process there is no
reference against which to measure their eventual perceived
quality. Nevertheless, it is of vital importance to providers of
video content to be able to monitor and predict the perceptual
quality of their videos, since this directly impacts customer
satisfaction. Video quality tools can also help make well-
informed design choices while creating systems for captur-
ing, processing, transmitting, and displaying videos. Video
quality assessment algorithms also have applications in video
denoising, designing loss functions for deep learning, video
compression, and many other high-impact areas.

Collecting a large number of human opinion scores on the
quality of a video is the most reliable way to measure its qual-
ity. However, collecting subjective opinions of video quality is
a cumbersome and expensive task. It is also time-consuming
and cannot be deployed prior to or during transmission of
a video, when they are being live-streamed or have other
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Fig. 1. Space-Time Chips capture elements in motion. On the left are frames
1 and 15 of a video of a basketball game. The ST-chip is marked in blue. The
player near the edges of the chip on the xy plane is moving to his right as
time progresses. The chip is a localized cut of all the frames between 1 and
15, perpendicular to the direction of his motion, which captures the player,
as shown on the right.

latency constraints. Subjective opinions are nevertheless useful
as a gold standard when designing objective video quality
assessment (VQA) algorithms. Objective VQA algorithms
are designed to correlate well with these subjective human
judgments, and deployed effectively and cheaply in video
processing systems. VQA algorithms are typically evaluated
on the basis of data gathered from studies on human judgments
of video quality. Subjective judgments of video quality are
first collected from a statistically significant number of human
observers and normalized with respect to each observer’s
scores to form an opinion score for each observer and for
each video. These opinion scores are then averaged across the
observers yielding single mean opinion score (MOS) for each
video. These mean opinion scores are the ground truth against
which objective VQA algorithms are trained and tested.

Objective VQA algorithms fall into three categories: full-
reference (FR), reduced-reference (RR), and no-reference
(NR). FR VQA algorithms require a reference video against
which the distorted video is compared. RR VQA algorithms
require only some information from the reference video,
but not all, to predict the quality of a distorted video. NR
VQA algorithms do not make use of a reference video, and
the models we present here fall in this category. NR VQA
algorithms rely on distortion-specific features or models of
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natural video statistics to predict video quality, and are of great
interest because of their potentially broader applications.

In this work, we propose a NR VQA algorithm based on the
natural video statistics of space-time (ST) chips. ST Chips are
a new feature space that are defined as localized and oriented
cuts of a video volume, and an illustration of the concept
is shown in Fig. 1. We show that when a pristine video is
processed using models derived from the human visual system,
ST Chips extracted from the processed video that are along the
direction of motion follow certain regular statistics, which is a
breakthrough in our understanding of natural video statistics.
We first proposed the idea of using ST Chips in [2], where we
extracted ST Chips using optical flow in a prototype algorithm.
In this work, we develop that idea further, introducing temporal
processing of the video data based on models of the human
visual system, and doing away with optical flow by using
a simpler and more elegant approach based on regularities
revealed by analysis of video statistics. Directions of motions
are found in an implicit manner by using well-known models
of natural image statistics and the smoothness of motion fields.
The statistics of ST Chips extracted along these directions of
motion can be modelled with parametrized distributions, and
we show that these parameters can be used to reliably predict
the quality of videos. We call our model ChipQA, which we
designed to be able to handle different kinds of videos. We
show that ChipQA achieves state-of-the-art (SOTA) perfor-
mance on a large new high-motion VQA database. We also
test ChipQA on several other VQA databases of professional
and user generated content and show that it achieves high-
correlations with human judgments of video quality, while also
being very computationally efficient.

The paper is organized as follows. In the following section,
we briefly review previous work in the area of NR VQA.
In section III, we describe our algorithm and its perceptual
underpinnings. In section IV we report and analyze results on
several large VQA database, and we conclude in section V.

II. PREVIOUS WORK

V-BLIINDS [3] is a no-reference video quality algorithm
that models the natural video statistics of the discrete cosine
transform (DCT) of frame differences. V-BLIINDS also makes
use of features that capture global and local motion coherency.
VIIDEO [4] is a ”completely blind” NR VQA algorithm,
in that it is not trained on a database at all and can be
deployed as-is. VIIDEO makes use of the high inter-subband
correlations of statistical features that have been observed in
pristine videos but not in distorted videos. VIIDEO predicts
the quality of videos based on this observation and without
any training. Manasa and Channappayya [5] proposed an NR
VQA algorithm based on the statistics of optical flow. The
coefficient of variation of the standard deviation of optical flow
at different spatial locations is used to quantify irregularities
in motion. Dendi and Channappayya [6] proposed a statistical
model for the distribution of spatio-temporal bandpass coef-
ficients. The statistics of these coefficients are modelled as
following an assymmetric generalized Gaussian distribution.
The parameters from the statistical fits are used to predict

quality. ChipQA-0 [2] introduced the idea of localized cuts in
space-time, ST Chips, which may be viewed as highly local-
ized variations of space-time slices, which are defined over the
global range of spatial and temporal video coordinates, instead
of locally. The ST Chips in ChipQA-0 were extracted using
optical flow, making the algorithm expensive and impractical
for use when low-latency is a requirement. The statistics of
ST Chips are modelled based on the general observation that
natural videos follow regular statistics, and that the regularity
of these statistics is disturbed in the presence of distortions.
Quantifying these deviations from natural statistics can thus
be used to quantify the degree of distortion and the perceptual
quality of the video, by learning mappings between these
statistics and perception. Finding and describing these statistics
is a challenge but many clues about these patterns can be
gleaned from the human visual system. The human visual
system has adapted to the regular statistics of videos, using
them to reduce redundancies in visual signals. Mimicking the
front-end visual processes involved in encoding the visual
signal, it is possible to reveal departures from these regularities
and use them to quantify video quality.

TLVQM [7] is a recent NR VQA algorithm that defines
a number of distortion-specific and motion-related features
that are relevant to video quality. It does this in two stages.
In the first stage, a number of low-complexity features are
computed on every frame. These features capture the intensity
and spread of motion vectors and also include specific features
responsive to blockiness, blur, and interlacing. In the second
stage, high-complexity features are computed on one frame
each second. These include features that are tailored to cap-
ture underexposure, overexposure, noise, blur, blockiness, low
contrast, interlacing, low sharpness, low brightness, and low
colorfulness. TLVQM has many distortion-specific features
and can hence be used as a general purpose NR VQA
algorithm in many settings, but it also has many parameters
that must be tuned. It represents a different paradigm from
natural video statistics-based models, since it does not attempt
to model naturalness but instead explicitly models specific
distortions. CNN-TLVQM [8] is a variant of this method where
deep features are added to TLVQM features to obtain better
performance.

MMSP-VQA [9] is a deep learning based approach for
NR VQA. It was trained on a very large-scale dataset called
FlickrVid-150k. Features are extracted on each frame from
multiple layers of an Inception-Resnet-v2 [10] network pre-
trained on ImageNet [11]. The features were then averaged
and trained with a deep neural network. FlickrVid-150k and
the source code for MMSP-VQA have not yet been released.

NR Image Quality Assessment (IQA) algorithms have been
found to be quite competitive with NR VQA algorithms
on user-generated content (UGC). This is because UGC is
dominated by spatial distortions and does not usually present
much temporal variation on quality. NR IQA algorithms such
as FRIQUEE [12] and HIGRADE [13] have been found
to outperform NR VQA algorithms on datasets such as
LIVE VQC [14], Konvid-1k [15], and YouTube-UGC [15].
FRIQUEE uses a bag of perceptually motivated statistical
features from different spaces, including luminance, color, and
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(a) k(t) for t 2 (0, 10) for a = 0.5 (b) Discrete samples of k[n] for n from 0 to 4 and for
a = 0.5

Fig. 2. Continuous and discrete versions of the temporal filter. We use 5 discrete coefficients for the filter in our implementation.

gradients. HIGRADE models the statistics of the log-derivative
of gradients, and was designed for HDR content, but has been
found to work well on UGC content as well. BRISQUE [16] is
an earlier NR IQA algorithm that utilizes a spatial model of the
statistics of distorted pictures. BRISQUE models the statistics
of bandpass, divisively normalized coefficients of images,
based on the observation that bandpass, divisively normalized
pristine images follow a first order Gaussian distribution.
Distorted images change these statistics, and the parameters
of fits to the statistics of an image can be used to reliably
predict the quality of an image. The statistical models of dis-
torted pictures discovered in BRISQUE underpin subsequent
advances in NSS-based IQA research. NIQE [17] also models
spatially bandpassed coefficients, but does not require training.
NIQE quantifies the deviation of the statistics of an image
via a statistical fit to a small corpus of high-quality natural
images. CORNIA [18] is an NR IQA algorithm that does not
attempt to model the statistics of natural images, but instead
uses a dictionary to effectively represent images for quality
assessment. Li et al. [19] proposed a CNN based method for
UGC quality assessment and trained it on a combination of
three major UGC databases.

Space-time slices are cuts of a video through space and
time along fixed, pre-determined directions and spanning an
entire video. Space-time slices have been effectively used for
FR VQA, but are only applicable to stored videos that are
available to an algorithm in their entirety [20]–[23] Space-time
chips significantly modify this concept, since they are highly
localized in space and time, are sensitive to local motion, and
can be used in real-time applications. Space-time chips were
first introduced in ChipQA-0 [2], but were found using optical
flow in that method. Optical flow is generally expensive to
compute, and their requirement can make algorithms compu-
tationally impractical, although motion is relevant to any study
of video quality. Motion has also been used in several FR VQA
models [24]–[26] and NR VQA models [2], [3], [5], [7]. In
our work, we use implicit motion to define the ST Chips used
in quality prediction, based on a simple regularity maximizing
concept and without using optical flow. Our new model is able
to obtain better performance with much lower computational
complexity than the original prototype ChipQA-0. ChipQA-

0 also performed poorly on UGC databases, while the full
model, ChipQA, incorporates temporal filtering, and utilizes
chroma and gradient features, yielding a holistic algorithm
that performs well on both professional and user generated
content.

III. VIDEO QUALITY ASSESSMENT USING SPACE-TIME
CHIPS

A. Space-Time Perception

When a video signal is incident on the retina, it is subjected
to bandpass spatial filtering expressed at the outputs of the
retinal ganglion cells. In a simple model of this process,
local spatial averages of the signal are subtracted from the
signal, and a form of adaptive gain control is applied on the
difference [27]. The resultant signal has a greatly reduced
entropy and is carried by the optical nerve at a reduced
bandwidth to further stages along the visual pathway. This
“contrast signal” is subsequently subjected to temporal entropy
reduction filtering ( [28]–[31]) which can also be modelled in
a simple way as a temporal bandpass filter operation, with
filter kernel given by

k(t) = t(1� at) exp(�2at)u(t); (1)

where t denotes time, a is a constant parameter, and u(t) is the
unit step function. The function is plotted against t in Fig. 2a.
These processes serve to spatially and temporally decorrelate
the visual signal. These initial stages of the human visual
system motivate the use of spatial and temporal decorrelating
functions on videos before analyzing their statistics.

When the visual signal arrives at area V1 (the primary
visual cortex) it is decomposed into orientation and scale-
tuned spatial and temporal channels. Neurons in area V1 are
also sensitive to specific local orientations of motion. From
here, the visual signal is passed to area middle temporal
(MT) in extrastriate cortex, where further motion processing
occurs [24], [28]. MT contains neurons sensitive to motion
over larger spatial fields, and the neural representation of the
space-time visual signal at this point makes efficient use of
space-time regularity. Similarly, ST Chips are sensitive to local
orientations of motions aggregated over large spatial fields,
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which we use to build spatiotemporal representations of video
data.

B. Defining Space-Time Chips

The first step in our algorithm is to compute spatial mean-
subtracted and contrast-normalized (MSCN) coefficients of
each frame in a given video. Given a luminance image I[i; j; n]
at frame index (time) n, the MSCN coefficients Î[i; j; n] are:

Î[i; j; n] =
I[i; j; n]� �[i; j; n]

�[i; j; n] + C
(2)

where i 2 1; 2::M , j = 1; 2::N are the spatial indices, M and
N are the height and width of the image respectively, C is a
constant for numerical stability, and

�[i; j; n] =

k=KX
k=�K

k=KX
k=�K

w[k; l]I[i+ k; j + l; n] (3)

�[i; j; n] =

vuut k=KX
k=�K

k=KX
k=�K

w[k; l](I[i+ k; j + l; n]� �[i; j; n])2

(4)
are the local spatial mean and standard deviation of luminance,
respectively. w = fw[k; l]; k 2 �K; ::;K; l 2 �K; ::;Kg is a
2D circularly-symmetric Gaussian weighting function sampled
out to 3 standard deviations and rescaled to unit volume.
We use K = 3 in our implementation. Research on natural
image statistics [12], [13], [16] has shown that, in the absence
of distortion, the coefficients Î[i; j; n] can be expected to
reliably follow a first-order generalized Gaussian distribution
(GGD). This is the basis of state-of-the-art NR IQA algorithms
such as FRIQUEE, HIGRADE, and BRISQUE, and is used
in VQA algorithms as well to model spatial statistics, e.g.,
in V-BLIINDS. Moreover, the MSCN operation supplies a
reasonable approximation to bandpass processing and adaptive
gain control (relevant to contrast masking) that occurs in the
retina.

Following spatial MSCN processing, we apply the causal
temporal filter (Eq.1) to groups of T 0 consecutive frames, with
no overlap between adjacent groups of frames. This is cheaper
than using overlapping blocks and we found that this does not
affect performance. The discrete coefficients of the filter, k[n],
are shown in Fig. 2b for a = 0:5 and the length of the filter
P = 5. We experimented with different values of a and discuss
how they affect performance in the results section. We denote
the result of this temporal operation as D.

D[i; j; n] = Î[i; j; n] � k[n] (5)

We use reflective padding in the temporal dimension at the
boundaries of each block of T 0 frames such that the output
also has T 0 frames. We fix P = T 0 to minimize the effect
of boundary artifacts, as increasing P to be greater than T
would result in a greater use of padded points. For ease of
representation, denote the processed frame D[i; j; n] for i 2
1; 2::M , j = 1; 2::N at time instance n as Dn.

We are interested in finding important directions at different
spatial locations along which ST Chips can be extracted. In
our experimental model, we fixed T 0 = R for simplicity, so

Fig. 3. Extracting ST Chips from a video volume of spatially and temporally
decorrelated frames from DT�R+1 to DT . One portion of the video is shown
for illustration. ST Chips are extracted by cutting through the volume over
R�R windows (that are spaced apart by 4R pixels) R frames back in time.
ST Chips are the angled squares in blue, and the windows are shown in red.

that each ST chip is extracted from an R�R�R volume. At a
particular time instance T , consider the output of the previous
operation Dn over indices n = T�R+1 to n = T , which is a
single block of R frames. Divide DT into spatial windows of
size R�R. For each R�R window, we define chips that pass
through the block of frames from DT backwards in time to
DT�R+1, and that are constrained to pass through the center
of the R�R window such that the normal vector to any chip
lies on the xy plane. Some examples of chips are shown in
Fig. 5 (in blue, with the R�R windows in red) and chips for
a single R�R�R volume are shown in Fig. 4. These chips
can be oriented at diverse angles. Among these angles, one
is assumed to best capture the local motion, and a chip that
is oriented perpendicular to the motion vector at this location
will capture objects in motion along the motion vector. This
is illustrated in Fig. 1. Under these constraints on the chip, we
are assuming that the motion is along a vector on the xy plane,
which relies implicitly on the assumption that motion is linear
and translational in small spatiotemporal volumes. This is a
reasonable assumption that forms the basis of most modern
motion estimation algorithms [32], [33].

In our earlier work [2], we found the directions of motion
explicitly using optical flow. This is expensive and depends
on the accuracy of the optical flow algorithm. Assuming
that motion is smooth for a pristine video, we expect the
chips that are perpendicular to the directions of motion to
follow similar statistics as natural images, since they contain
projections of natural scenes as they move. The MSCNs
of natural images are known to reliably obey a Gaussian
law [3], [16], [17], [27], [34]. Assuming the veracity of these
natural image statistics models, and smoothness and linearity
of motion in local regions of pristine videos, we find the
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Fig. 4. Finding the best ST-Chip over a particular R � R spatial window.
Chips are extracted from a R�R�R video volume along 6 angles that are
equally spaced from 0 to π. The angles are shown next to their corresponding
chips. The chip which has the minimum excess kurtosis is selected as the chip
that best captures motion. This criterion is based on the Gaussianity of natural
images and the smoothness of motion.

directions of motions implicitly by selecting a chip having
a sample set that is closest to being Gaussian amongst all of
the potential chips. This is done in a simple and direct way
by computing the sample kurtosis [35] of each chip along Q
different equally spaced angles, from 0 to �, and selecting the
chip that has the kurtosis closest to 3, which is the kurtosis
of a Gaussian random variable, as is illustrated in Fig. 4.
There are many possible tests of the Gaussianity of a set of
chip samples. These include the Shapiro-Wilk test [36], the
Anderson-Darling test [37], the Martinez-Iglewicz test [38],
and the D’agostino kurtosis test [39], which is similar to
the kurtosis method that we apply. There are a number of
reasons we use the simple sample kurtosis. First, we are not
actually testing for Gaussianity, which these frequentist tests
are designed for. Rather, we are instead ranking the chips by
kurtosis and selecting which among them is most Gaussian
in that sense. It is possible that all, none, or a subset of
the chips may pass a given Gaussianity test, e.g., if there
is little or no motion present, all may present as Gaussian.
Ranking procedures on test statistics like those in [36]–[39]
have not been shown to measure relative Gaussianity. Further,
by using the sample kurtosis we are aligning with the powerful
a priori and well-founded assumption that the bandpass chips
will reliably obey a zero-mean generalized Gaussian law. The
members of this distribution class may be viewed as differing
only in kurtosis, hence we may view our use of kurtosis as a
conditional measure. Given the small sample size of 25, this
is a powerful constraint. Lastly, the computational efficiency
of the kurtosis lends it to fast implementations. We chose
Q = 6 in our implementation, and found that increasing Q
improves performance, although computational cost increases
as well. Variation in performance as Q is varied is discussed
in section IV-E.

Having selected the chip that is most Gaussian at a window,
we then aggregate them across windows. We do not collect

chips from all R � R windows, but skip D = 4 windows in
each of the x and y directions. We study how performance
varies with D in Section IV-D. The centers of the windows
from which ST Chips are extracted are thus separated from
each other by a distance of 4R pixels in each dimension. This
is shown in Fig. 3. We discuss how this spatial downsampling
affects performance in Section IV-E . The aggregated chips
form a single “frame” S for every group of T 0 frames. We
discretize coordinates while searching for the best chip such
that each chip is of dimension R � R. The dimension of the
aggregated frame S of ST Chips is M 0 � N 0, where M 0 =
R
4 b

M
R c and N 0 = R

4 b
N
R c. We chose R = T 0 = 5 in our

implementation. Variation in performance as R is varied is
discussed in section IV.

We repeated the process described above for the spatial
gradient magnitude field of the video as well. Gradients con-
tain important information descriptive of edges and contrast
variations and have been found to be useful for image and
video quality assessment. Gradient-based features find a place
in most SOTA algorithms [7], [12], [13], [40]. ChipQA com-
putes the gradient components in the vertical and horizontal
directions using a Sobel kernel of size 3 � 3. The Sobel
filter eliminates low frequency information and has high-
pass characteristics that detects edges. The statistics of these
edges are useful for quality assessment since they are often
heavily affected by distortions. We then find the MSCNs of
the gradient magnitude, apply the temporal filter k[n], and
extract ST Chips along the directions with kurtosis closest to
3 at windows that are separated by a distance of 4R in each
dimension. We refer to these as “ST Gradient Chips”.

C. Statistics of ST Chips

MSCNs of spatial frames and of gradient fields are known
to follow regular statistics, and this is true of ST Chips of
spatial frames and of gradient fields as well because of the
smoothness of motion. ST Chips and ST Gradient Chips are
found to follow a generalized Gaussian distribution (GGD) of
the form:

f(x;�;�) =
�

2��( 1
� )

exp(�(
jxj
�

)�) (6)

where �(:) is the gamma function:

�(�) =

Z 1
0

t��1 exp(�t)dt: (7)

The shape parameter � of the GGD and the variance of the
distribution are estimated using the moment-matching method
described in [41]. Examples of the first-order distribution of
ST Chips and ST Gradient Chips are shown in Fig. 5 and Fig. 6
respectively. Though the ST chip is chosen to be as Gaussian
as possible, previous research has shown that Gaussianity
breaks in the presence of distortions [13], [16], and for ST
chips the statistics could also deviate from Gaussianity for
large motion fields. These deviations from Gaussianity are
useful for quantifying losses in quality, and we find that the
GGD is able to model these deviations in the statistics well.




