Quality is in the Eve of the Beholder

Al Bovik

October 15, 2008

Image quality too good?

Theme #1

An analogy that I will develop:

- Assessing the quality of visual signals
- Measuring the fidelity of a visual communication system

are similar problems

A Classic Communication System

Tenet of Communication Theory

• The more known (that we can model) about

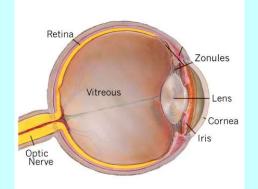
transmitter channel receiver

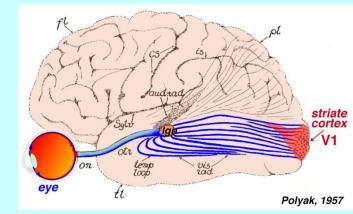
the better job of communication

Image Quality Assessment

What are transmitter, channel, and receiver....?

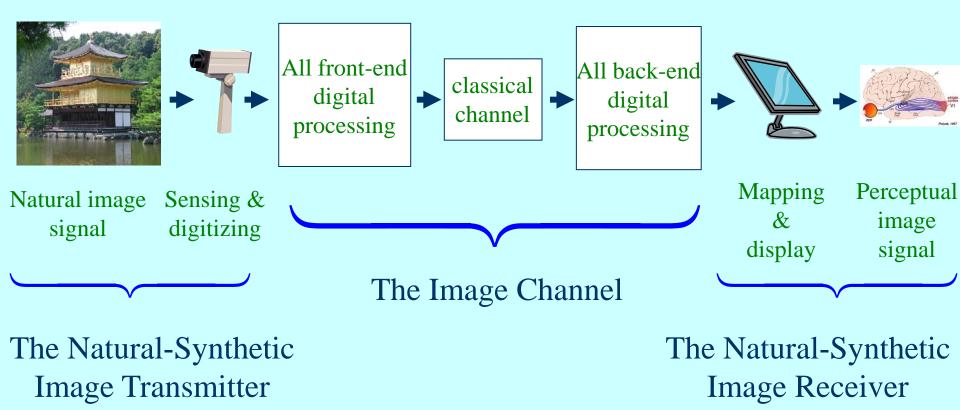
The Natural Image Transmitter



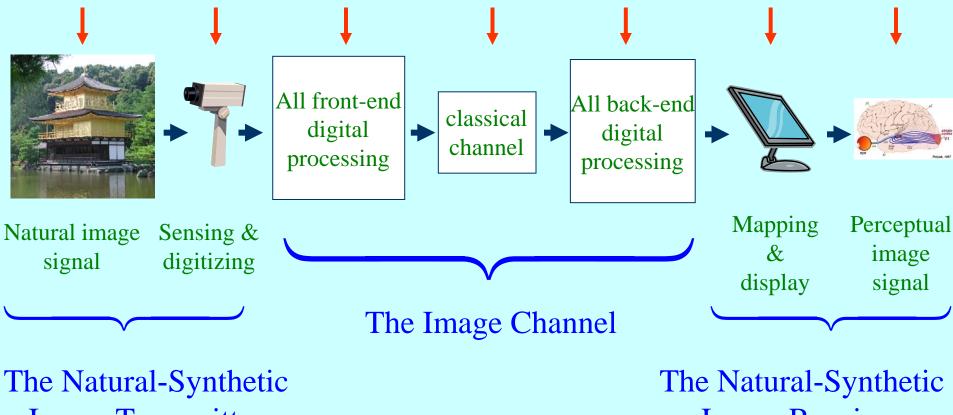


Photos of natural image transmitter

The Natural Image Receiver



Depictions of natural image receiver

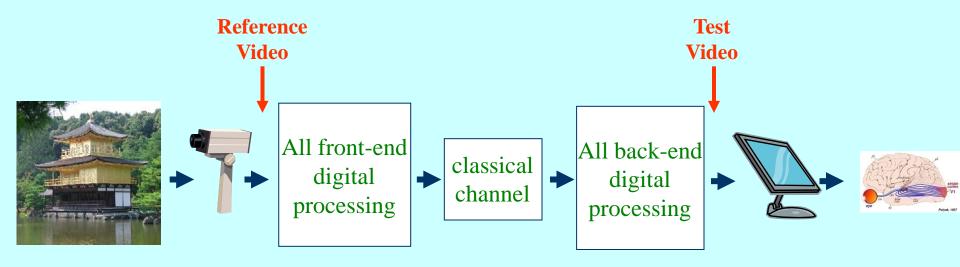


Overall Communication System

Sources of Image Distortion

Image Transmitter

Image Receiver


Theme #2

• Quality Assessment Algorithms are possible that correlate highly with subjective judgment.

"Nothing can be beautiful which is not true."

– John Ruskin

Full-Reference Quality Assessment

- Need accurate models of transmitter.
- Need accurate models of the receiver

Two Relevant Algorithms

Two still image quality assessment (IQA) algorithms **relevant** to later discussion ...

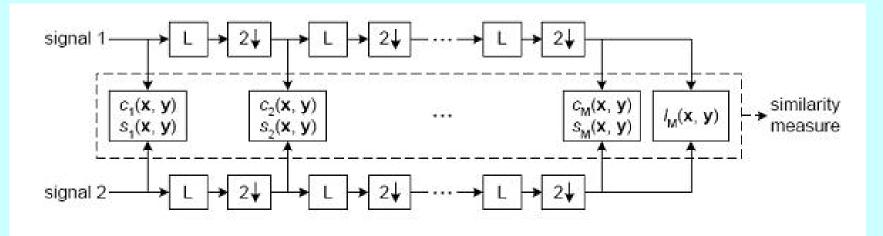
Structural Similarity (SSIM) Index

• Weighted local (patch) image statistics create a SSIM map:

$$SSIM_{\mathbf{I},\mathbf{J}} = \left(\frac{2\mu_{\mathbf{I}}\mu_{\mathbf{J}} + C_{1}}{\mu_{\mathbf{I}}^{2} + \mu_{\mathbf{J}}^{2} + C_{1}}\right) \cdot \left(\frac{2\sigma_{\mathbf{I}}\sigma_{\mathbf{J}} + C_{2}}{\sigma_{\mathbf{I}}^{2} + \sigma_{\mathbf{J}}^{2} + C_{2}}\right) \cdot \left(\frac{2\sigma_{\mathbf{I}\mathbf{J}} + C_{3}}{\sigma_{\mathbf{I}}\sigma_{\mathbf{J}} + C_{3}}\right)$$

local luminance similarity local contrast similarity local structural similarity

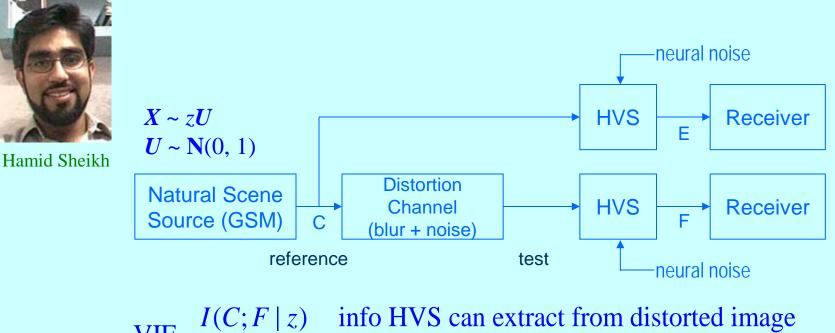
• Mean SSIM Index


$$SSIM(\mathbf{I}, \mathbf{J}) = \left(\frac{1}{NM}\right) \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} SSIM_{\mathbf{I}, \mathbf{J}}(i, j)$$

Zhou Wang

Wang & Bovik, *IEEE Signal Processing Letters*, March 02 Wang, Bovik, Sheikh & Simoncelli, *Trans on IP*, March 04

Multi-Scale SSIM



SSIM calculated over *scale space*

Multi-scale SSIM (MS-SSIM) calculated on dyadic pyramid yields better performance

Wang, Simoncelli & Bovik, Asilomar, Nov 2003

Visual Information Fidelity Index

 $VIF = \frac{I(C; F \mid z)}{I(C; E \mid z)} = \frac{info \text{ HVS can extract from distorted image}}{info \text{ HVS can extract from original image}}$

• I(C; F/z) = mutual information in wavelet domain conditioned on variance field z

Sheikh & Bovik, Trans on IP, Feb 06

SSIM and VIF are Related

• Under GSM model we have been able to show

VIF and Multi-scale SSIM

are essentially identical.

• Consequently, the efficacy of MS-SSIM is explained in information-theoretic sense under GSM model.

Relative Performance

Yuck!

LIVE Image Quality Assessment Database: >25,000 subjective (DMOS) judgments.

Spearman Rank-Order Correlation Coefficient (SROCC)

	JPEG2K #1	JPEG2K #2	JPEG #1	JPEG #2	WN	Gaussian Blur	Fast Fading Noise	All Lata
PSNR	0.93	0.86	0.88	0.77	0.99 ₁	0.78	0.89	0.82
JND	0.96 2	0.96	0.96	0.92	0.95	0.94	0.91	0.93
DCTune	0.83	0.72	0.87	0.82	0.93	0.67	0.77	0.80
PQS	0.94	0.92	0.94	0.90	0.95	0.93	0.94	0.93
NQM	0.95	0.94	0.94	0.90	0.99 ₁	0.85	0.82	0.91
Fuzzy (S7)	0.93	0.90	0.91	0.80	0.92	0.61	0.91	0.83
BSDM (S4)	0.91	0.94	0.91	0.92	0.93	0.96 2	0.94 2	0.93
VSNR	0.95*	0.95*	0.91*	0.91*	0.98 2	0.94	0.91	0.89
MS-SSIM	0.96 2	0.97 ₁	0.97 ₁	0.95 1	0.98 2	0.95	0.94 2	0.95 2
VIF	0.97 1	0.97 1	0.97 1	0.94 2	0.98 2	0.97 1	0.97 1	0.96 1

*Data available only for combined JPEG & JPEG2K results

Sheikh, Sabir & Bovik, Trans on IP, Nov 06

Theme #3

- QA algorithms are not just interesting research problems.
- They are practical ways of benchmarking image processing algorithms of every flavor.
- They can **remove the human element** when deciding algorithm performance.....
- while still accounting for **human judgment** of performance.

Challenge to the Community

• For **decades** we've been **eyeballing** image processing results or using the MSE/PSNR.

- My challenge to image processing algorithm designers: assess and report your results using a perceptually significant IQA/VQA metric
- Restoration; denoising; deblocking; reconstruction; representation; compression; inspection; network and wireless channel benchmarking, etc etc

Theme #4

• Perceptual optimization is a next big thing.

• Or should be!

What Excites Me

- Perceptual optimization using Quality Indices as objective functions!
- What we've "optimally" designed over the past 30+ years should be re-examined
- Signal restoration, denoising, enhancement, reconstruction, compression, display, quantization, scaling, recognition, detection, tracking etc etc etc

Example: Optimal Linear Image Restoration

Classic blur + noise

 $\mathbf{y} = \mathbf{g} * \mathbf{x} + \mathbf{n}$

 MMSE approach: Find best linear filter that minimizes

$$E\left[\left(\hat{\mathbf{x}}-\mathbf{x}\right)^2\right]$$

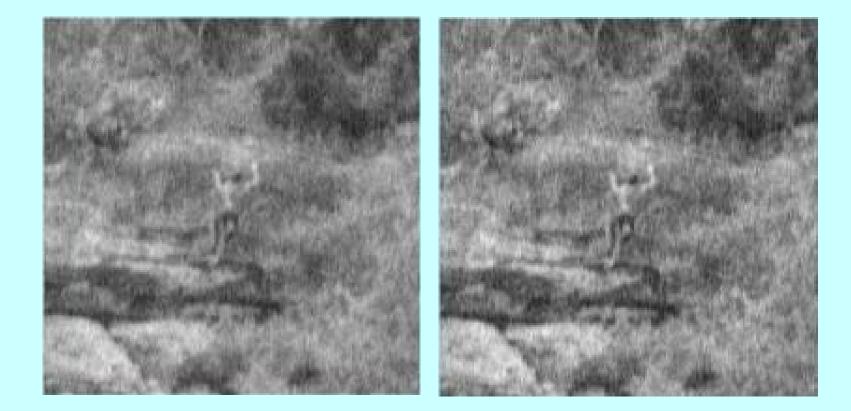
over all

$$\hat{\mathbf{x}} = \mathbf{h} * \mathbf{y}$$

Sumohana Channappayya

original

blur+noise


SSIM-Optimal Restoration

• Maximum SSIM approach: Find best linear filter that maximizes statistical SSIM Index:

$$Stat - SSIM(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) = \left(\frac{2\mu_{\mathbf{x}}\mu_{\mathbf{y}} + C_{1}}{\mu_{\mathbf{x}}^{2} + \mu_{\mathbf{y}}^{2} + C_{1}}\right) \left(\frac{2E\left[\left(\tilde{\mathbf{x}} - \mu_{\mathbf{x}}\right)\left(\tilde{\mathbf{y}} - \mu_{\mathbf{y}}\right)\right] + C_{2}}{E\left[\left(\tilde{\mathbf{x}} - \mu_{\mathbf{x}}\right)^{2}\right] + E\left[\left(\tilde{\mathbf{y}} - \mu_{\mathbf{y}}\right)^{2}\right] + C_{2}}\right)$$

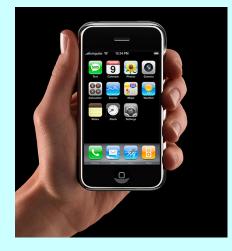
over all

$$\hat{\mathbf{x}} = \mathbf{h} * \mathbf{y}$$

• We solved this **quasi-convex** problem in a **near closed form** computationally efficient manner.

Local MMSE-optimal

SSIM-optimal


Theme #5

Video Quality Assessment is more important, harder, and requires better modeling than still image QA.

Digital Video is Taking Over the World

"Without impermanence, nothing is possible" - Thich Nhat Hanh

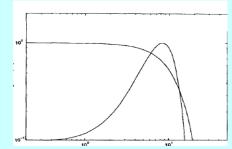
"Motion is the very essence of what has hitherto been called matter"

- Lord Kelvin

Video Distortions

• There **many** distortions that occur commonly in video.

- Blocking artifacts (compression)
- Ringing (compression)
- Mosaicking (block mismatches)
- False contouring (quantization)
- **Blur** (acquisition or compression)
- Additive Noise (acquisition or channel)

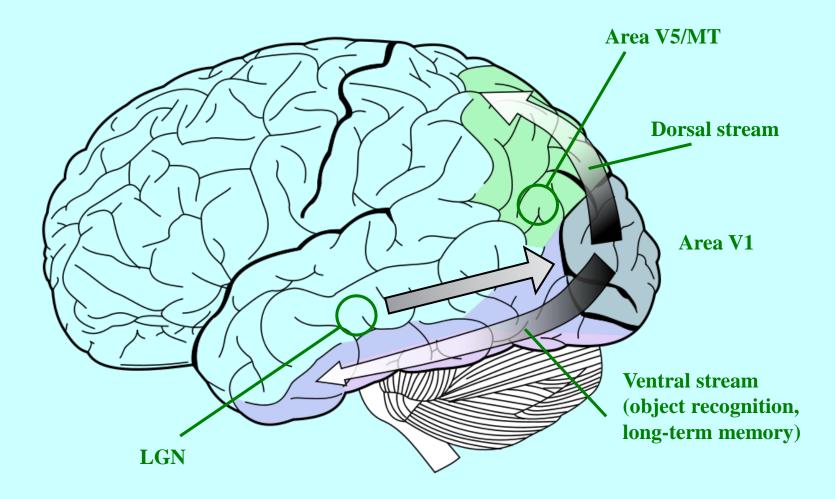

Temporal Distortions

- Temporal = "Mostly Temporal"
 - **Ghosting** (poor motion)
 - Motion blocking (propagation of block artifacts)
 - Motion compensation mismatches (ambiguity)
 - Mosquito edge effects (poor correction of ringing)
 - Packet loss/error concealment (ARQ, FEC)
 - Stationary area fluctuations (texture flutter)
 - Jerkiness (temporal aliasing)
 - **Smearing** (slow acquisition)

Whew!

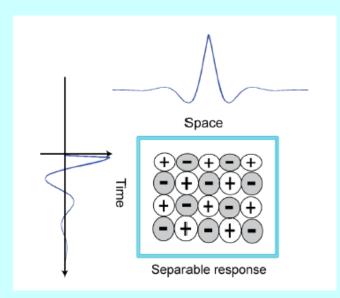
Competitive VQA Algorithms

- **Frame MS-SSIM/VIF**¹ MS-SSIM/VIF applied to frames
- "Swisscom P8" Leading VQEG FRTV Phase 1 Test proponent.
- Video Quality Metric (VQM)² from NTIA (an ANSI and ISO standard).
 Leading VQEG Phase 2 Test proponent (non-public study).
- No prior VQA algorithm has used motion estimates or motion tuning to compute VQA along motion trajectories.
- Some have used very simple **temporal filtering** w/o motion handling.



¹Wang, Lu & Bovik, *Image Commun.* '04 ²Pinson & Wolf, *IEEE Trans Broadcasting*, '04 Motion handling offers the greatest potential for improving VQA algorithms.

Perception of Motion


- The *dorsal stream* of visual data passes through Area V1 of primary visual cortex to Area V5 (Area MT – middle temporal)
- Area V1: Multichannel space-time decomposition of visual data occurs in V1: patterns, direction, speed localized
- Space-time data passed to Area MT, where space-time data is integrated into motion estimates¹

Flow of Visual Data

Area V1 Models

- V1 Spatial receptive field model: Gabor functions in quadrature pairs.
- V1 Temporal receptive field model: Causal gammamodulated sinusoids
- Space-time responses
 separable

3-D Gabor Model

- **Causality** not required for full-reference QA (not typically real-time)
- Separable time and space Gabor filters:

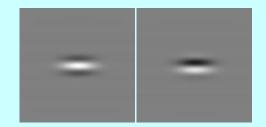
$$g(x, y, t) = K \left[e^{-t^2/2\gamma^2} e^{2i\pi(w_0 t)} \right] e^{-\left[\left(\frac{x}{\lambda} \right)^2 + y^2 \right]/2\sigma^2} e^{2i\pi(u_0 x + v_0 y)}$$

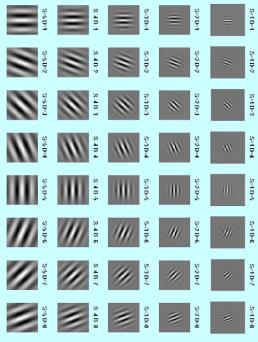
• Optimally localized in space-time-frequency.

Brief History of 2-D Gabor Functions

◆1980: 1-D Gabor model of V1 cortical fields (Marcelja)

•1985: 2-D uncertainty-optimal Gabor model of V1 cortical fields (Daugman); now dominant V1 spatial model.


•1986: First proposed for textured image analysis; now dominant texture filter primitives (Bovik, Clark, Geisler, Turner)


•1987: First proposed for motion computation; now dominant optical flow basis functions (Heeger; Fleet & Jepson 1990)

•1989: First proposed for stereo; now dominant stereo phase matching basis functions (Fleet & Jepson 1989)

•1993: Dominant primitives for Iris Recognition (Daugman 1993)

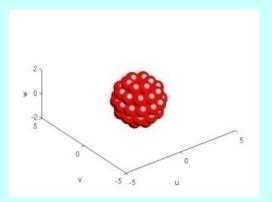
***1999**: Dominant primitives for Face Recognition (Wiskott 1999)

A Spatio-Temporal VQA Algorithm

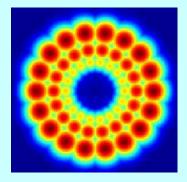
• We've recently created a Video Quality index that performs quite well:

MOtion-based Video Integrity Evaluation index,¹ or **MOVIE index**

- Spatial & temporal distortion assessment
- Operates in subband (Gabor) space-time-frequency
- Assesses temporal quality along computed motion trajectories
- Models Area MT motion tuning and motion weighting
- Embodies visual masking
- Combines principles from **SSIM** and **VIF**
- Information-theoretic optimal under natural scene statistic model



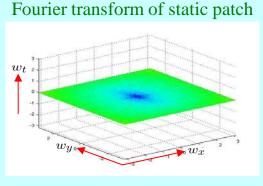
Kalpana Seshadrinathan


¹Seshadrinathan & Bovik, "Spatio-temporal Quality Assessment of Natural Videos," *IEEE Trans Image Processing*, submitted, 2008.

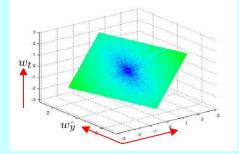
Spatio-Temporal Decomposition

- The MOVIE index is defined as a product: (Spatial MOVIE) x (Temporal MOVIE)
- In both: videoss (reference *f* and test *t*) decomposed by a 3-D multi-scale Gabor filterbank

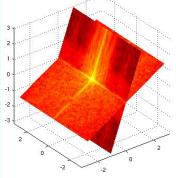
3-D Gabor filterbank in frequency space (one scale only)


Slice through 3-D spatial Gabor filterbank in frequency space

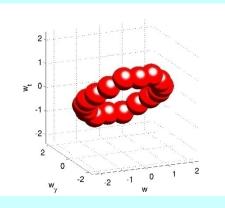
Outline of Spatial MOVIE Index

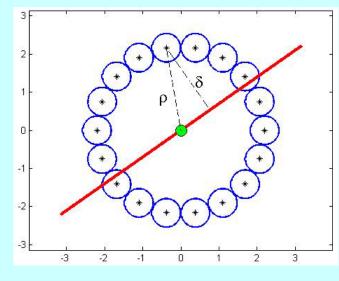

- Compare amplitude responses of 3-D Gabor filters to test and reference videos.
- Local Gabor-domain SSIM/VIF-like computation is made.
- Mutual masking principle is used (masking on both reference and test video)
- Overall **Spatial MOVIE Index** pools quality scores over scale/band, space, and time.

Outline of Temporal MOVIE Index


- Evaluates temporal quality along motion trajectories computed using 3-D Gabor phase-based optical flow (Fleet *et al*, 1990).
- Local motion of patches gives rise to orientations in space-time frequency:

Fourier transform of patch in motion


• Temporal MOVIE may be viewed as finding misalignments between local orientations of flow


Misaligned spectra of corresponding patches from reference and distorted videos.

Area MT Motion Tuning Model

- Outputs of Gabor filters combined to allow motion tuning.¹
- Gabor responses weighted by function of distance from translational plane.
- Filters close to plane given excitatory weights α_k , others inhibitory weights.

Excitatory responses at one scale

Motion plane and filters at one scale - weights are functions of ρ and δ

$$\alpha = \frac{\rho - \delta}{\rho}$$

shifted/scaled across responses to be zero-mean.

¹Simoncelli & Heeger, Vision Research, 1998.

Motion-Tuned Responses

- The motion tuned amplitude responses of 3-D space-time Gabor filters to test and reference videos are compared.
- A Gabor-domain SSIM/VIF-like computation is made.
- Overall **Temporal MOVIE Index** pools quality scores values over scale/band, space, and time.

MOVIE Index Maps

 Spatial & temporal MOVIE indices displayed as Quality Map Videos (bright = larger errors).

Test

Temporal MOVIE map

Reference

View video

Spatial

MOVIE map

Final MOVIE Index

• Overall **MOVIE Index** is separable combination of Spatial and Temporal MOVIE Indices:

 $MOVIE(f,g) = Spatial MOVIE(f,g) \times Temporal MOVIE(f,g)$

• MOVIE contains no tuned parameters. No dataset training.

Performance of MOVIE

- Assessed on VQEG FRTV Phase 1 Dataset.
- 20 reference sequences, 16 distortions of each
- 4 videos are artificial animations (floating letters on constant background, etc) - unnatural
- Scores tabulated in following Tables.

Performance Comparison

Spearman Rank Order Correlation Coefficient (SROCC) Comparison

Quality Model	SROCC
PSNR	0.79
Proponent P8 (Swisscom)*	0.80
Frame SSIM (Wang '04)	0.81
MOVIE	0.83
MOVIE (no animations)**	0.86

*Proponent P8 = best performing metric tested by VQEG

MOVIE is designed using natural scene statistic model. Animations (constant regions with step edges) don't satisfy NSS models. Other indices' behavior **varies little when animations are removed.

THEME #6

• A publicly available Video Quality Database is badly needed.

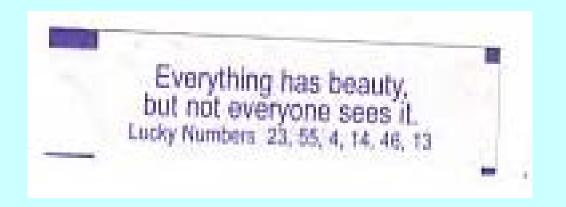
• Nobody is happy with the VQEG Phase 1 database

No other publicly-available VQA database

A LIVE Video Quality Database

- We are making available a LIVE VQA Database of generic power freely available to the research community.
- We provide **subjective scores** (DMOS) for the distorted videos from a large human study.

Kalpana Seshadrinathan



Rajiv Soundararajan

"Everything has beauty, but not everyone sees it."

- Confucius

Corollary: All videos have distortions, but not everyone sees them the same way.

Towards a Video Quality Database

- VQEG Phase-1 FRTV database limitations:
 - Reference & distorted videos *interlaced*
 - Only compression-related artifacts; e.g., H.263 and MPEG.
 - Distorted videos have poor perceptual separation.

LIVE Video Quality Database

- 10 reference videos supplied by Technical University of Munich free of charge.
- All **progressively scanned** YUV420, 768x432, 10s duration, 25 fps and 50 fps.
- **Diverse assortment of distortions** more challenging VQEG, enabling more rigorous performance evaluation of VQA systems:
 - Compression artifacts from modern codecs (MPEG-2, H.264)
 - Packet loss errors from wireline (IP) environment
 - Packet loss errors from wireless environment
- Each reference video subjected to **15 distortions**

Distorted Videos

- (ISO¹) MPEG-2 distortions: bitrates 700 Kbps 4 Mbps.
- (JVT²) H.264 distortions: bitrates 200 Kbps 5 Mbps.
- Simulated (VCEG³) IP errors on H.264 stream. Loss rates: 3%, 5%, 10%, and 20%. Packetization: 1-4 slices/frame. Both I- and P-frame losses.
- Simulated (VCEG³) wireless errors on H.264 stream. Multiple slices/frame: short packets (~200 bytes). Both I-and P-frame losses.
- For each distortion, perceptual separation of degradations emphasized.
- Example (low-res): H.264, 7Mbps, 3% packet loss, 4 packets/frame (IP channel)

¹ISO = International Organization for Standardization ²JVT = Joint Video Team ³VCEG = Video Coding Experts Group

Subjective Study

- 38 subjects viewed 150 test videos (+10 hidden references) in two ½-hour sessions.
- Single Stimulus Continuous Quality Evaluation (SSCQE) (hidden reference) – continuous evaluation allows for fine gradations in subjective quality assessment.
- Subjects also **discretely** scored each video **at the end**.

Visual Interface

Please provi		or the entire video se	equence and then pro	ess any key
Bad	+ Poor	Fair	Good	Excellent

Visual Interface

Processing Subjective Scores

• **Difference scores** per session (hidden reference):

$$d_{j}(i, k) = s_{j-ref}(i, k) - s_{j}(i, k)$$

 $s_j(i, k) =$ score assigned to video *j* by subject *i* in session *k*

• Z-scores per session:

$$Z_j(i, k) = [d_j(i, k) - \mu_j(i, k)] / \sigma_j(i, k)$$

- Subject rejection using ITU-R BT 600.11
- DMOS of video = average of Z-scores

Performance of VQA IndicesYuck!on LIVE Video Quality Assessment Database|

Linear Correlation Coefficient (LCC) after Nonlinear Regression

Algorithm	Wireless	IP	H.264	MPEG-2	All
PSNR	0.46	0.41	0.48	0.38	0.40
SSIM	0.55	0.54	0.66	0.58	0.54
Multi-Scale SSIM	0.71	0.72	0.69	0.69	0.74
Speed-weighted SSIM ¹	0.58	0.58	0.72	0.64	0.60
VNSR ²	0.70	0.74	0.65	0.68	0.69
VQM ³	0.74	0.65	0.63	0.80	0.72
MOVIE	0.81	0.73	0.77	0.75	0.77

¹Wang & Li, J. Opt Soc. Amer., 2007.

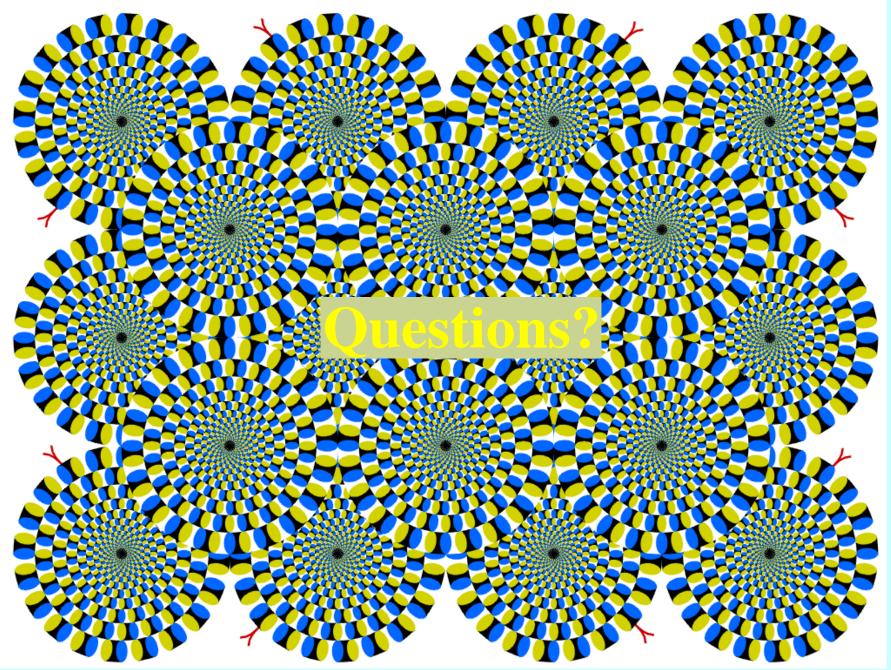
²VSNR = "Visual Signal-to-Noise Ratio" – Chandler & Hemami, *IEEE Trans Image Process.*, 2007

³VQM = "Video Quality Metric" – Pinson & Wolf, *IEEE Trans Broadcasting*, 2004. Currently the ANSI/ISO standard.

Performance of VQA IndicesYuck!on LIVE Video Quality Assessment Database

Spearman Rank-Order Correlation Coefficient (SROCC)

Algorithm	Wireless	IP	H.264	MPEG-2	All
PSNR	0.43	0.32	0.43	0.36	0.37
SSIM	0.52	0.47	0.66	0.56	0.53
Multi-Scale SSIM	0.73	0.65	0.71	0.66	0.74
Speed-weighted SSIM ¹	0.56	0.47	0.71	0.62	0.59
VNSR ²	0.70	0.69	0.65	0.59	0.68
VQM ³	0.72	0.64	0.65	0.78	0.70
MOVIE	0.79	0.67	0.72	0.75	0.75


¹Wang & Li, J. Opt Soc. Amer., 2007.

²VSNR = "Visual Signal-to-Noise Ratio" – Chandler & Hemami, *IEEE Trans Image Process.*, 2007

³VQM = "Video Quality Metric" – Pinson & Wolf, *IEEE Trans Broadcasting*, 2004. Currently the ANSI/ISO standard.

The Future

- Algorithms: Blind quality assessment for applications as well as the general blind problem.
- **Datasets:** LIVE VQA Database expanding more distortion types
- Human Data: Use the continuous-scale human data we collected for improve VQA algorithm development & algorithm analysis.

LIVE's VQA Sponsors

